
April 18, 2011
Version 1 © 2011 Industrial Control Communications, Inc.

XTPro Specification

Programmers Guide

1

TABLE OF CONTENTS

1. Revision History ... 2

2. Abbreviations and Terms .. 3

3. Introduction .. 4
3.1 HMI-Based Implementation ... 4
3.2 Web Browser-Based Implementation .. 5

4. Commands .. 6
4.1 noop .. 7
4.2 vzn .. 8
4.3 id ... 9
4.4 read_data .. 10
4.5 write_data ... 11
4.6 load_file ... 12
4.7 store_file ... 13
4.8 reinit .. 14
4.9 auth ... 15
4.10 cov .. 16

5. Error Codes ... 18

2

1. Revision History

Version Date Notes
1 04.18.2011 Initial release

3

2. Abbreviations and Terms

Term Description
Server Device hosting data (responds to requests)
Client Device initiating requests
TCP Transport Control Protocol
IP Internet Protocol

COV Change of Value
XML Extensible Markup Language

4

3. Introduction

XTPro is an acronym for XML TCP/IP Protocol. The XTPro specification is an
application-layer (positioned at level 7 of the OSI model) messaging protocol that
provides XML-based client/server communication via TCP port 2000. Typically,
XTPro is used for the implementation of graphical user interfaces (GUIs), such as
advanced web servers or HMIs that have the ability to request information via
XML sockets, and then manipulate and/or display the information in a rich
application-specific manner.

XTPro is a request/response protocol that provides services specified by
commands. This document will describe the format and contents of these
commands and provide examples of transactions.

For more information on the XML standard itself, please refer to the official
reference at http://www.w3.org/TR/2004/REC-xml-20040204/.

3.1 HMI-Based Implementation

A representative implementation based upon a stand-alone HMI client is detailed
in Figure 1. In this scenario, the client application is developed by using tools
provided by the HMI manufacturer, and is hosted independently of the actual
server device.

Server
Device

Content is loaded
onto HMI device

2

XML socket (port 2000)

<xreq>
<read_data>
<ref>Pr_2</ref>
</read_data>

</xreq>

HMI content
executes and
establishes
XML socket

3

XML socket (port 2000)

<xresp>
<read_data>
<ref>Pr_2</ref>
<val>123</val>

:
</xresp>

6

Programmer authors
HMI (client) content

1

Client initiates XTPro
requests

4

Server responds to
client’s requests

5

XT
Pr
o
Se
rv
er

Figure 1: HMI-Based Implementation

5

3.2 Web Browser-Based Implementation

A representative implementation based upon using a web browser as the client is
detailed in Figure 2. In this scenario, the client application is developed by using
an active web server authoring tool (such as Adobe Flash®). The active content
is then embedded into one or more HTML files and loaded onto the server
device’s file system (refer to the server device’s Instruction Manual for detailed
information regarding customization of the web server content). Accessing the
device’s web server via a standard web browser then loads the active content,
which initiates communication with the server.

Figure 2: Web Browser-Based Implementation

Server
Device

Content is loaded onto
server device’s file

system for web server

2

Active web content
is delivered to client

XML socket (port 2000)

<xreq>
<read_data>
<ref>Pr_2</ref>
</read_data>

</xreq>

User accesses
server’s web
page via web

browser (client)

3http://192.168.16.111

Active content
executes and
establishes
XML socket

5
http://192.168.16.111

XML socket (port 2000)

<xresp>
<read_data>
<ref>Pr_2</ref>
<val>123</val>

:
</xresp>

8
http://192.168.16.111

Programmer authors
active web page

content (via Adobe
Flash, etc.)

Fi
le
 S
ys
te
m

HTTP (port 80)
Network or
Internet

1

Client initiates XTPro
requests

6

4

Server responds to
client’s requests

7

XT
Pr
o
Se
rv
er

6

4. Commands

Refer to Table 1 for a list of available commands. Any other commands not listed
are invalid and will therefore result in error responses from the server.

Table 1: Commands

Command Description Page
noop Sets connection to idle mode. 7
vzn Get specification version. 8
id Get product name and version. 9

read_data Read data. 10
write_data Write data. 11
load_file Load an XML file from the file system. 12
store_file Store and XML file to the file system. 13

reinit Reinitialize the server. 14
auth Verify authentication. 15
cov Subscribe to change of value service. 16

Each XML transaction request must begin with an <xreq> start tag and may
contain only one command. Server responses are encapsulated in <xresp>
tags. With the exception of COV notification messages, server responses will
echo the originally-requested command, and will also contain a status/error code.

The server response time may vary depending on the current network and server
utilization/load: the client should allow sufficient time for server responses.

Certain characters may not be supported by all XML parsers. It is therefore
recommended to avoid encoding any of special XML characters (predefined
entities) listed in Table 2.

Table 2: Special XML Characters

Name Character Description
quot “ Quotation mark
amp & Ampersand
apos ‘ Apostrophe

lt < Less-than sign
gt > Greater-than sign

7

4.1 noop

The noop command can be issued in order to stop COV notification messages
(refer to section 4.10).

Client Request Format
<xreq>

<noop/>
</xreq>

Server Response Format
<xresp>

<noop/>
<error>error_code</error>

</xresp>

Notes
• error_code: Status/error code. Refer to Table 3 on page 18.

8

4.2 vzn

The vzn command can be issued in order to obtain the XTPro specification
version supported by the server prior to any subsequent commands being issued.
It is the responsibility of the client to ensure compatibility with the specification
version supported by the server.

Client Request Format
<xreq>

<vzn/>
</xreq>

Server Response Format
<xresp>

<vzn>version_number</vzn>
<error>error_code</error>

</xresp>

Notes
• version_number: Integer decimal value greater than or equal to 1.
• error_code: Status/error code. Refer to Table 3 on page 18.

9

4.3 id

The id command is used to request identification information about the specific
device hosting the XTPro server.

Client Request Format
<xreq>

<id/>
</xreq>

Server Response Format
<xresp>

<id>
<name>product_name</name>
<vendor>vendor_name</vendor>
<description>product_description</description>
<vzn1>version_1</vzn1>
<!-- Additional versions may be included here -->
<vzn2>version_2</vzn2>
:
<vzn#>version_#</vzn#>

</id>
<error>error_code</error>

</xresp>

Notes
• product_name: Server device product name. Required tag.
• vendor_name: Vendor/manufacturer name. Optional tag.
• product_description: Product description. Optional tag.
• version_1: Required version number (typically indicates the server device’s

main application firmware version). Format is product-specific (refer to the
server device’s Instruction Manual for detailed information).

• version_2 … version_#: Optional additional version numbers. If provided,
format is product-specific (refer to the server device’s Instruction Manual for
detailed information). There is no explicit limit to the number of additional
version numbers that may be provided, but each additional version number
will be encapsulated within a unique tag comprised of the characters “vzn”
plus a sequential numeric index (e.g. “vzn2”, “vzn3”, “vzn4”, etc.)

• error_code: Status/error code. Refer to Table 3 on page 18.

10

4.4 read_data

The read_data command is used to read data from the server at a specified
reference.

Client Request Format
<xreq>

<read_data>
<ref>reference</ref>

</read_data>
</xreq>

Server Response Format
<xresp>

<read_data>
<ref>reference</ref>
<val>data_value</val>

</read_data>
<error>error_code</error>

</xresp>

Notes
• reference: Reference targeting the desired data. Format is product-specific

(refer to the server device’s Instruction Manual for detailed information). The
response reference field is always an echo of the request reference field.

• data_value: The reference’s current data value. Format is product-specific
(refer to the server device’s Instruction Manual for detailed information).

• error_code: Status/error code. Refer to Table 3 on page 18.

11

4.5 write_data

The write_data command is used to write data to the server at a specified
reference.

Client Request Format
<xreq>

<write_data>
<ref>reference</ref>
<val>data_value</val>

</write_data>
</xreq>

Server Response Format
<xresp>

<write_data>
<ref>reference</ref>
<val>data_value</val>

</write_data>
<error>error_code</error>

</xresp>

Notes
• reference: Reference targeting the desired data to be written. Format is

product-specific (refer to the server device’s Instruction Manual for detailed
information). The response reference field is always an echo of the request
reference field.

• data_value: The data value to write to the reference. Format is product-
specific (refer to the server device’s Instruction Manual for detailed
information). The response data_value field is always an echo of the request
data_value field.

• error_code: Status/error code. Refer to Table 3 on page 18.

12

4.6 load_file

The load_file command is used to load an XML file from the server’s file system.
Because a nul termination (“0” byte) is used by the server to indicate the end-of-
file condition, loading a non-XML file (containing “0” bytes) may result in
undefined client behavior. Therefore, this command should only be used to load
XML files.

Client Request Format
<xreq>

<load_file>
<file>file_path</file>

</load_file>
</xreq>

Once the server has received the request, it will then retrieve the requested file
from its file system and transmit it (with nul-termination) to the client. The server
will then send the following response to indicate the end of the load_file
transaction:

Server Response Format
<xresp>

<load_file>
<file>file_path</file>

</load_file>
<error>error_code</error>

</xresp>

Notes
• If the requested file is not found (e.g. invalid file_path), then no file is

returned, and the only server response is the “server response format”
outlined above. An error will also be indicated in the error_code field.

• file_path: The path to the desired file. Format is product-specific (refer to the
server device’s Instruction Manual for detailed information). The server
response file_path field is always an echo of the request file_path field.

• error_code: Status/error code. Refer to Table 3 on page 18.

13

4.7 store_file

The store_file command is used to store an XML file to the server’s file system.
Because a nul termination (“0” byte) must be used by the client to indicate the
end-of-file condition, storing a non-XML file (containing “0” bytes) may result in
undefined server behavior. Therefore, this command should only be used to
store XML files.

Client Request Format
<xreq>

<store_file>
<file>file_path</file>

</store_file>
</xreq>

Once the client has sent the request, it may then begin transmitting the file (with
nul-termination) to the server. When transmission is complete (nul-termination
received), the server will then store the received file to its file system. The server
will then send the following response to indicate the end of the store_file
transaction:

Server Response Format
<xresp>

<store_file>
<file>file_path</file>

</store_file>
<error>error_code</error>

</xresp>

Notes
• file_path: The path for the server to use when storing the file. Format is

product-specific (refer to the server device’s Instruction Manual for detailed
information). The server response file_path field is always an echo of the
request file_path field.

• While the filename portion of the file_path field is arbitrary, the targeted
folder structure must already exist, or the server will reject the store
operation. Therefore, if a custom folder structure is to be used on the
server’s file system, that structure must first be created by alternate means
(refer to the server device’s Instruction Manual for detailed information on
modifying the server’s file system).

• If a file with the same filename as the received file currently exists at the
targeted location, that file will be overwritten by the received file. Otherwise,
the received file will be stored as a new file under the received filename.

• error_code: Status/error code. Refer to Table 3 on page 18.

14

4.8 reinit

The reinit command is used to reinitialize the server device. This command is
typically issued by the client after storing a file (via the store_file command) that
is used in some way for server device or driver configuration. In this case,
although the configuration file has been stored onto the server device’s file
system, changes to this configuration file will not take effect until the server
device is power cycled, or the reinit command is issued.

During reinitialization, the XML TCP socket used for XTPro communications will
remain intact, but all other device drivers (control protocols, etc.) will be restarted.
This may require several seconds to complete, after which time the server will
issue the indicated response. Refer to the server device’s Instruction Manual for
specific information regarding the behavior of this command.

Request Format
<xreq>

<reinit/>
</xreq>

Response Format
<xresp>

<reinit/>
<error>error_code</error>

</xresp>

Notes
• error_code: Status/error code. Refer to Table 3 on page 18.

15

4.9 auth

The auth command is used for validating authentication credentials with the
server. Note that authentication is not a prerequisite for data communications via
XTPro: it is available, however, to provide client programmers with the ability to
restrict access to what they deem to be “administrative” features of their user
interface if they desire.

For security purposes, the actual authentication credentials always remain stored
on the server: the auth command issues a credential validation request that is
either confirmed or rejected by the server. The mechanism of modifying the
authentication credentials is not within the scope of XTPro: refer to the server
device’s Instruction Manual for specific information regarding the modification
procedure.

Client Request Format
<xreq>

<auth>
<user>username</user>
<pswd>password</pswd>

</auth>
</xreq>

Server Response Format
<xresp>

<auth>
<user>username</user>
<pswd>password</pswd>

</auth>
<error>error_code</error>

</xresp>

Notes
• username: The username to authenticate. Refer to the server device’s

Instruction Manual for detailed information. The server response username
field is always an echo of the request username field.

• password: The password to authenticate. Refer to the server device’s
Instruction Manual for detailed information. The server response password
field is always an echo of the request password field.

• error_code: Status/error code. Refer to Table 3 on page 18.

16

4.10 cov

The cov command is used for subscribing to the Change-of-Value (COV)
notification service on the server. Once a cov command has been received and
acknowledged by the server, it will begin to send unprompted COV notification
messages to the client at periodic intervals. Refer to the server device’s
Instruction Manual for information on the specific notification interval. In
comparison to continuously polling the data values of all references on the server
with the read_data command, the COV notification service provides a more
efficient mechanism for the client to detect changed data values.

COV notifications will continue to be sent by the server until any other command
is issued by the client (including, but not limited to, the noop command). Once
COV notifications have been terminated, the client must reissue a cov command
if it wishes to once again subscribe to the COV notification service.

Client Request Format
<xreq>

<cov/>
</xreq>

Server Response Format
<xresp>

<cov/>
<error>error_code</error>

</xresp>

Once the server has sent the COV response message, it will then begin to
transmit COV notification messages to the client at a periodic rate. The specific
format of these messages will vary depending upon whether or not any data
values have changed since the previous COV notification message.

COV Notification Format (no COVs)
<xresp>
</xresp>

COV Notification Format (one or more COVs)
<xresp>

<cov>
<ref>reference</ref>
<val>data_value</val>

</cov>
<!-- Additional COVs may be added here -->

</xresp>

17

Notes
• reference: The reference of the changed data. Format is product-specific

(refer to the server device’s Instruction Manual for detailed information).
• data_value: The new data value of the reference. Format is product-specific

(refer to the server device’s Instruction Manual for detailed information).
• error_code: Status/error code. Refer to Table 3 on page 18.
• The cov command may not be supported by all server devices: refer to the

server device’s Instruction Manual for detailed information.
• When more than one COV has occurred since the server’s previous COV

notification message, each COV will be included in the next notification
message encapsulated within <cov>…</cov> tags.

18

5. Error Codes

Table 3: Status / Error Codes

Status / Error Code Description

none No error (success)

invalid_reference Invalid reference

invalid_value Invalid value

invalid_command Unsupported command

file_does_not_exist The file does not exist

file_error File error

resource_error
Insufficient resources to complete the
transaction. Try again at a later time.

invalid_authentication Invalid authentication

busy
Server is busy and cannot complete the
transaction at this time. Try again at a
later time.

error General/other error

invalid_path Bad file path syntax

invalid_directory The directory does not exist

47520 Westinghouse Dr.
Fremont, CA 94539
Tel: 510.440.1060
Fax: 510.440.1063
http://www.fujielectric.com/fecoa/

