
Software

Motors | Automation | Energy | Transmission & Distribution | Paints

WPS v2.5X

User Manual

User Manual

Language: English

Document number: 10001381480 / R11

Publication date: 03/2019

Series: WPS

Contents

WPS v2.5X | 3

Contents

..231 WPS v2.5X

..242 Introduction
... 242.1 Welcome

... 242.2 System Requirements

... 242.3 Supported Equipments

... 252.4 Copyright Notice

... 252.5 Safety Notice

..263 What's New
... 263.1 What's New - This Version

... 263.2 What's New - Previous Versions

..334 Installation/Uninstallation
... 334.1 Before Installing

... 334.2 Installing

... 334.3 Uninstalling

..345 Getting to Know the Environment
... 345.1 Environment

... 345.2 Configuration Structure

..366 Quick Start
... 366.1 Welcome Window

... 516.2 Creating New Configuration

... 526.3 New Configuration - Online Equipment

... 606.4 New Configuration - Offline Equipment

... 686.5 Creating New Resource

... 686.6 New Resource - Online Equipment

... 766.7 Pop-up Menu

... 766.8 Pop-up Menu - Configuration

... 916.9 Pop-up Menu - Resource

..1007 Communication
... 1007.1 Equipment Parameterization

... 1007.2 Establishing Communication - USB Serial Port

... 1047.3 Establishing Communication - RS232

... 1097.4 Establishing Communication - RS485

... 1147.5 Cables

... 1167.6 USB/Serial Converter

WPS v2.5X | 4

..1188 Ladder
... 1188.1 Concepts

.. 118Introduction 8.1.1

.. 120Legend 8.1.2

.. 121Contact Logic 8.1.3

.. 123Data types 8.1.4

.. 123Direct Representation 8.1.5

... 1248.2 Editor

.. 124Desktop 8.2.1

.. 125Ladder Menu 8.2.2

.. 126Rungs 8.2.3

... 126Overview8.2.3.1

... 127Editing8.2.3.2

... 127Title and Comment8.2.3.3

... 128Inserting Elements8.2.3.4

.. 128Overview8.2.3.4.1

.. 129In Series8.2.3.4.2

.. 130In Parallel8.2.3.4.3

... 130Brow sing8.2.3.5

.. 130With the Keyboard8.2.3.5.1

.. 132With the Mouse8.2.3.5.2

... 133Copy/Paste8.2.3.6

.. 137Variables 8.2.4

... 137Overview8.2.4.1

... 138Fields8.2.4.2

... 140Editing in the Rung8.2.4.3

... 142Literals in the Rung8.2.4.4

... 142Arrays in the Rung8.2.4.5

... 143Instances and Structures in the Rung8.2.4.6

... 144Volatile and Retentive Instances8.2.4.7

.. 148Compile 8.2.5

.. 149Transfer 8.2.6

.. 150Online Monitoring 8.2.7

... 1548.3 Working with USERFBs

.. 154Creating USERFBs 8.3.1

.. 156Adding input/output 8.3.2

.. 159Editing the Ladder 8.3.3

.. 160Using USERFBs 8.3.4

..1629 Diagnostic
... 1629.1 Monitoring Variable

... 1639.2 Trend

.. 163Overview 9.2.1

.. 164Configuration 9.2.2

..16710 Wizards
... 16710.1 Overview

... 16710.2 Monitoring Wizard

... 16910.3 Configuration Wizard

..17511 Equipments (Devices)

Contents

WPS v2.5X | 5

... 17511.1 CFW100

.. 175Description 11.1.1

.. 175System Markers 11.1.2

.. 178I/O's 11.1.3

.. 179Import from WLP 11.1.4

.. 181Parameters 11.1.5

... 181Overview11.1.5.1

... 183Configuration11.1.5.2

... 185Read and Write of Parameters11.1.5.3

... 188Hide/Unhide Parameters and Group of Parameters11.1.5.4

... 198User Parameters11.1.5.5

.. 200Ladder 11.1.6

... 200Coil11.1.6.1

.. 200DIRECTCOIL11.1.6.1.1

.. 201INVERTEDCOIL11.1.6.1.2

.. 203RESETCOIL11.1.6.1.3

.. 204SETCOIL11.1.6.1.4

.. 205TOGGLECOIL11.1.6.1.5

... 206Communication Netw ork11.1.6.2

.. 206Modbus RTU11.1.6.2.1

.. 206Modbus RTU Overview11.1.6.2.1.1

.. 207MB_MasterControlStatus11.1.6.2.1.2

.. 209MB_ReadBinary11.1.6.2.1.3

.. 213MB_ReadRegister11.1.6.2.1.4

.. 217MB_SlaveStatus11.1.6.2.1.5

.. 219MB_WriteBinary11.1.6.2.1.6

.. 223MB_WriteRegister11.1.6.2.1.7

... 227Compare11.1.6.3

.. 227COMP_EQ11.1.6.3.1

.. 229COMP_GE11.1.6.3.2

.. 231COMP_GT11.1.6.3.3

.. 233COMP_LE11.1.6.3.4

.. 235COMP_LT11.1.6.3.5

.. 237COMP_NE11.1.6.3.6

... 238Contact11.1.6.4

.. 238NCCONTACT11.1.6.4.1

.. 240NOCONTACT11.1.6.4.2

.. 241NTSCONTACT11.1.6.4.3

.. 242PTSCONTACT11.1.6.4.4

... 244Control11.1.6.5

.. 244PID11.1.6.5.1

... 249Conversion11.1.6.6

.. 249BOOL11.1.6.6.1

.. 249BYTE_TO_BOOL11.1.6.6.1.1

.. 251DWORD_TO_BOOL11.1.6.6.1.2

.. 252REAL_TO_BOOL11.1.6.6.1.3

.. 254WORD_TO_BOOL11.1.6.6.1.4

.. 255BYTE11.1.6.6.2

.. 255BOOL_TO_BYTE11.1.6.6.2.1

.. 257DWORD_TO_BYTE11.1.6.6.2.2

.. 258REAL_TO_BYTE11.1.6.6.2.3

.. 260WORD_TO_BYTE11.1.6.6.2.4

.. 262DWORD11.1.6.6.3

.. 262BOOL_TO_DWORD11.1.6.6.3.1

WPS v2.5X | 6

.. 263BYTE_TO_DWORD11.1.6.6.3.2

.. 265REAL_TO_DWORD11.1.6.6.3.3

.. 266WORD_TO_DWORD11.1.6.6.3.4

.. 268REAL11.1.6.6.4

.. 268BOOL_TO_REAL11.1.6.6.4.1

.. 269BYTE_TO_REAL11.1.6.6.4.2

.. 271DWORD_TO_REAL11.1.6.6.4.3

.. 272WORD_TO_REAL11.1.6.6.4.4

.. 274WORD11.1.6.6.5

.. 274BOOL_TO_WORD11.1.6.6.5.1

.. 275BYTE_TO_WORD11.1.6.6.5.2

.. 277DWORD_TO_WORD11.1.6.6.5.3

.. 278REAL_TO_WORD11.1.6.6.5.4

... 280Counter11.1.6.7

.. 280CTD11.1.6.7.1

.. 283CTU11.1.6.7.2

.. 286CTUD11.1.6.7.3

... 291Data Transfer11.1.6.8

.. 291DEMUX11.1.6.8.1

.. 293ILOAD11.1.6.8.2

.. 294ILOADBOOL11.1.6.8.3

.. 296ISTORE11.1.6.8.4

.. 297ISTOREBOOL11.1.6.8.5

.. 299MUX11.1.6.8.6

.. 302SEL11.1.6.8.7

.. 304STORE11.1.6.8.8

.. 306USERERR11.1.6.8.9

... 308Filter11.1.6.9

.. 308LOWPASS11.1.6.9.1

... 311Logic11.1.6.10

.. 311Logic Bit11.1.6.10.1

.. 311RESETBIT11.1.6.10.1.1

.. 313SETBIT11.1.6.10.1.2

.. 315TESTBIT11.1.6.10.1.3

.. 317Logic Boolean11.1.6.10.2

.. 317AND11.1.6.10.2.1

.. 318NOT11.1.6.10.2.2

.. 320OR11.1.6.10.2.3

.. 321XNOR11.1.6.10.2.4

.. 323XOR11.1.6.10.2.5

.. 324Logic Rotate11.1.6.10.3

.. 324ROL11.1.6.10.3.1

.. 326ROR11.1.6.10.3.2

.. 328Logic Shift11.1.6.10.4

.. 328ASHL11.1.6.10.4.1

.. 330ASHR11.1.6.10.4.2

.. 332SHL11.1.6.10.4.3

.. 334SHR11.1.6.10.4.4

... 336Math11.1.6.11

.. 336Math Basic11.1.6.11.1

.. 336ABS11.1.6.11.1.1

.. 338ADD11.1.6.11.1.2

.. 340DIV11.1.6.11.1.3

.. 342MOD11.1.6.11.1.4

Contents

WPS v2.5X | 7

.. 344MUL11.1.6.11.1.5

.. 346NEG11.1.6.11.1.6

.. 348SUB11.1.6.11.1.7

.. 350Math Extended11.1.6.11.2

.. 350ALOG1011.1.6.11.2.1

.. 352EXP11.1.6.11.2.2

.. 354LN11.1.6.11.2.3

.. 356LOG1011.1.6.11.2.4

.. 357POW11.1.6.11.2.5

.. 359ROUND11.1.6.11.2.6

.. 360SQRT11.1.6.11.2.7

.. 362TRUNC11.1.6.11.2.8

.. 363Math Trigonometry11.1.6.11.3

.. 363ACOS11.1.6.11.3.1

.. 365ASIN11.1.6.11.3.2

.. 367ATAN11.1.6.11.3.3

.. 368ATAN211.1.6.11.3.4

.. 370COS11.1.6.11.3.5

.. 372SIN11.1.6.11.3.6

.. 373TAN11.1.6.11.3.7

.. 375Math Util11.1.6.11.4

.. 375MAX11.1.6.11.4.1

.. 377MIN11.1.6.11.4.2

.. 379SAT11.1.6.11.4.3

... 382Module11.1.6.12

.. 382USERFB11.1.6.12.1

... 383Motion Control11.1.6.13

.. 383MW_RefVelocity11.1.6.13.1

... 386Timer11.1.6.14

.. 386TON11.1.6.14.1

.. 390TOF11.1.6.14.2

.. 393TP11.1.6.14.3

... 396Structures11.1.6.15

.. 399Communication 11.1.7

... 399Force I/O11.1.7.1

... 40011.2 CFW300

.. 400Description 11.2.1

.. 401System Markers 11.2.2

.. 404I/O's 11.2.3

.. 405Import from WLP 11.2.4

.. 408Parameters 11.2.5

... 408Overview11.2.5.1

... 410Configuration11.2.5.2

... 412Read and Write of Parameters11.2.5.3

... 415Hide/Unhide Parameters and Group of Parameters11.2.5.4

... 425User Parameters11.2.5.5

.. 427Ladder 11.2.6

... 427Coil11.2.6.1

.. 427DIRECTCOIL11.2.6.1.1

.. 428INVERTEDCOIL11.2.6.1.2

.. 430RESETCOIL11.2.6.1.3

.. 431SETCOIL11.2.6.1.4

.. 432TOGGLECOIL11.2.6.1.5

... 433Communication Netw ork11.2.6.2

WPS v2.5X | 8

.. 433Modbus RTU11.2.6.2.1

.. 433Modbus RTU Overview11.2.6.2.1.1

.. 434MB_MasterControlStatus11.2.6.2.1.2

.. 436MB_ReadBinary11.2.6.2.1.3

.. 440MB_ReadRegister11.2.6.2.1.4

.. 444MB_SlaveStatus11.2.6.2.1.5

.. 446MB_WriteBinary11.2.6.2.1.6

.. 450MB_WriteRegister11.2.6.2.1.7

... 454Compare11.2.6.3

.. 454COMP_EQ11.2.6.3.1

.. 456COMP_GE11.2.6.3.2

.. 458COMP_GT11.2.6.3.3

.. 460COMP_LE11.2.6.3.4

.. 462COMP_LT11.2.6.3.5

.. 464COMP_NE11.2.6.3.6

... 465Contact11.2.6.4

.. 465NCCONTACT11.2.6.4.1

.. 467NOCONTACT11.2.6.4.2

.. 468NTSCONTACT11.2.6.4.3

.. 469PTSCONTACT11.2.6.4.4

... 471Control11.2.6.5

.. 471PID11.2.6.5.1

... 476Conversion11.2.6.6

.. 476BOOL11.2.6.6.1

.. 476BYTE_TO_BOOL11.2.6.6.1.1

.. 478DWORD_TO_BOOL11.2.6.6.1.2

.. 479REAL_TO_BOOL11.2.6.6.1.3

.. 481WORD_TO_BOOL11.2.6.6.1.4

.. 482BYTE11.2.6.6.2

.. 482BOOL_TO_BYTE11.2.6.6.2.1

.. 484DWORD_TO_BYTE11.2.6.6.2.2

.. 485REAL_TO_BYTE11.2.6.6.2.3

.. 487WORD_TO_BYTE11.2.6.6.2.4

.. 489DWORD11.2.6.6.3

.. 489BOOL_TO_DWORD11.2.6.6.3.1

.. 490BYTE_TO_DWORD11.2.6.6.3.2

.. 492REAL_TO_DWORD11.2.6.6.3.3

.. 493WORD_TO_DWORD11.2.6.6.3.4

.. 495REAL11.2.6.6.4

.. 495BOOL_TO_REAL11.2.6.6.4.1

.. 496BYTE_TO_REAL11.2.6.6.4.2

.. 498DWORD_TO_REAL11.2.6.6.4.3

.. 499WORD_TO_REAL11.2.6.6.4.4

.. 501WORD11.2.6.6.5

.. 501BOOL_TO_WORD11.2.6.6.5.1

.. 502BYTE_TO_WORD11.2.6.6.5.2

.. 504DWORD_TO_WORD11.2.6.6.5.3

.. 505REAL_TO_WORD11.2.6.6.5.4

... 507Counter11.2.6.7

.. 507CTD11.2.6.7.1

.. 510CTU11.2.6.7.2

.. 513CTUD11.2.6.7.3

... 518Data Transfer11.2.6.8

.. 518DEMUX11.2.6.8.1

Contents

WPS v2.5X | 9

.. 520ILOAD11.2.6.8.2

.. 521ILOADBOOL11.2.6.8.3

.. 523ISTORE11.2.6.8.4

.. 524ISTOREBOOL11.2.6.8.5

.. 526MUX11.2.6.8.6

.. 529SEL11.2.6.8.7

.. 531STORE11.2.6.8.8

.. 533USERERR11.2.6.8.9

... 535Filter11.2.6.9

.. 535LOWPASS11.2.6.9.1

... 538Logic11.2.6.10

.. 538Logic Bit11.2.6.10.1

.. 538RESETBIT11.2.6.10.1.1

.. 540SETBIT11.2.6.10.1.2

.. 542TESTBIT11.2.6.10.1.3

.. 544Logic Boolean11.2.6.10.2

.. 544AND11.2.6.10.2.1

.. 545NOT11.2.6.10.2.2

.. 547OR11.2.6.10.2.3

.. 548XNOR11.2.6.10.2.4

.. 550XOR11.2.6.10.2.5

.. 551Logic Rotate11.2.6.10.3

.. 551ROL11.2.6.10.3.1

.. 553ROR11.2.6.10.3.2

.. 555Logic Shift11.2.6.10.4

.. 555ASHL11.2.6.10.4.1

.. 557ASHR11.2.6.10.4.2

.. 559SHL11.2.6.10.4.3

.. 561SHR11.2.6.10.4.4

... 563Math11.2.6.11

.. 563Math Basic11.2.6.11.1

.. 563ABS11.2.6.11.1.1

.. 565ADD11.2.6.11.1.2

.. 567DIV11.2.6.11.1.3

.. 569MOD11.2.6.11.1.4

.. 571MUL11.2.6.11.1.5

.. 573NEG11.2.6.11.1.6

.. 575SUB11.2.6.11.1.7

.. 577Math Extended11.2.6.11.2

.. 577ALOG1011.2.6.11.2.1

.. 579EXP11.2.6.11.2.2

.. 581LN11.2.6.11.2.3

.. 583LOG1011.2.6.11.2.4

.. 584POW11.2.6.11.2.5

.. 586ROUND11.2.6.11.2.6

.. 587SQRT11.2.6.11.2.7

.. 589TRUNC11.2.6.11.2.8

.. 590Math Trigonometry11.2.6.11.3

.. 590ACOS11.2.6.11.3.1

.. 592ASIN11.2.6.11.3.2

.. 594ATAN11.2.6.11.3.3

.. 595ATAN211.2.6.11.3.4

.. 597COS11.2.6.11.3.5

.. 599SIN11.2.6.11.3.6

WPS v2.5X | 10

.. 600TAN11.2.6.11.3.7

.. 602Math Util11.2.6.11.4

.. 602MAX11.2.6.11.4.1

.. 604MIN11.2.6.11.4.2

.. 606SAT11.2.6.11.4.3

... 609Module11.2.6.12

.. 609USERFB11.2.6.12.1

... 610Motion Control11.2.6.13

.. 610MW_RefVelocity11.2.6.13.1

... 613Timer11.2.6.14

.. 613TON11.2.6.14.1

.. 617TOF11.2.6.14.2

.. 620TP11.2.6.14.3

... 623Structures11.2.6.15

.. 626Communication 11.2.7

... 626Force I/O11.2.7.1

... 62711.3 CFW500

.. 628Description 11.3.1

.. 628Parameters 11.3.2

... 628Overview11.3.2.1

... 630Configuration11.3.2.2

... 632Read and Write of Parameters11.3.2.3

... 635Hide/Unhide Parameters and Group of Parameters11.3.2.4

... 645User Parameters11.3.2.5

... 64711.4 CFW501

.. 647Description 11.4.1

.. 648Parameters 11.4.2

... 648Overview11.4.2.1

... 650Configuration11.4.2.2

... 652Read and Write of Parameters11.4.2.3

... 655Hide/Unhide Parameters and Group of Parameters11.4.2.4

... 665User Parameters11.4.2.5

... 66711.5 CFW-11

.. 667Description 11.5.1

.. 668Parameters 11.5.2

... 668Overview11.5.2.1

... 669Configuration11.5.2.2

... 672Read and Write of Parameters11.5.2.3

... 675Hide/Unhide Parameters and Group of Parameters11.5.2.4

... 685User Parameters11.5.2.5

.. 687Diagnostic 11.5.3

... 687Trace11.5.3.1

.. 687Overview11.5.3.1.1

.. 689Configuration11.5.3.1.2

... 69511.6 LDW900

.. 695Description 11.6.1

.. 696System Markers 11.6.2

.. 699Oriented Start-Up 11.6.3

.. 703Auto-Tuning 11.6.4

.. 705Import from WLP 11.6.5

.. 0Parameters 11.6.6

.. 0Ladder 11.6.7

... 0Logic11.6.7.1

Contents

WPS v2.5X | 11

... 0Math11.6.7.2

... 0Motion Control11.6.7.3

.. 708Cam Profiles 11.6.8

.. 719Structures 11.6.9

.. 0Diagnostic 11.6.10

.. 0Communication 11.6.11

... 72211.7 MW500

.. 722Description 11.7.1

.. 722Parameters 11.7.2

... 722Overview11.7.2.1

... 722Configuration11.7.2.2

... 725Read and Write of Parameters11.7.2.3

... 728Hide/Unhide Parameters and Group of Parameters11.7.2.4

... 738User Parameters11.7.2.5

... 74011.8 PLC300

.. 740Description 11.8.1

.. 741New Features and Corrections 11.8.2

.. 748I/O's 11.8.3

.. 752System Markers 11.8.4

.. 760Ladder 11.8.5

... 760Coil11.8.5.1

.. 760DIRECTCOIL11.8.5.1.1

.. 761IMMEDIATECOIL11.8.5.1.2

.. 762INVERTEDCOIL11.8.5.1.3

.. 763RESETCOIL11.8.5.1.4

.. 764SETCOIL11.8.5.1.5

.. 765TOGGLECOIL11.8.5.1.6

... 766Communication Netw ork11.8.5.2

.. 766CANopen11.8.5.2.1

.. 766CANopen Overview11.8.5.2.1.1

.. 768CO_MasterControlStatus11.8.5.2.1.2

.. 771CO_SDORead11.8.5.2.1.3

.. 774CO_SDOWrite11.8.5.2.1.4

.. 777CO_SlaveStatus11.8.5.2.1.5

.. 778Modbus RTU11.8.5.2.2

.. 778Modbus RTU Overview11.8.5.2.2.1

.. 779MB_MasterControlStatus11.8.5.2.2.2

.. 781MB_ReadBinary11.8.5.2.2.3

.. 785MB_ReadRegister11.8.5.2.2.4

.. 789MB_SlaveStatus11.8.5.2.2.5

.. 791MB_WriteBinary11.8.5.2.2.6

.. 795MB_WriteRegister11.8.5.2.2.7

.. 799Modbus TCP11.8.5.2.3

.. 799Modbus TCP Overview11.8.5.2.3.1

.. 799MBTCP_ClientControlStatus11.8.5.2.3.2

.. 802MBTCP_ReadBinary11.8.5.2.3.3

.. 806MBTCP_ReadRegister11.8.5.2.3.4

.. 810MBTCP_ServerStatus11.8.5.2.3.5

.. 813MBTCP_WriteBinary11.8.5.2.3.6

.. 817MBTCP_WriteRegister11.8.5.2.3.7

... 821Compare11.8.5.3

.. 821COMP_EQ11.8.5.3.1

.. 823COMP_GE11.8.5.3.2

.. 825COMP_GT11.8.5.3.3

WPS v2.5X | 12

.. 827COMP_LE11.8.5.3.4

.. 829COMP_LT11.8.5.3.5

.. 831COMP_NE11.8.5.3.6

... 832Contact11.8.5.4

.. 832NCCONTACT11.8.5.4.1

.. 834NOCONTACT11.8.5.4.2

.. 835NTSCONTACT11.8.5.4.3

.. 836PTSCONTACT11.8.5.4.4

... 838Control11.8.5.5

.. 838PID11.8.5.5.1

.. 843PID211.8.5.5.2

... 850Conversion11.8.5.6

.. 850BCD11.8.5.6.1

.. 850BCD_TO_WORD11.8.5.6.1.1

.. 851WORD_TO_BCD11.8.5.6.1.2

.. 853BOOL11.8.5.6.2

.. 853BYTE_TO_BOOL11.8.5.6.2.1

.. 854DWORD_TO_BOOL11.8.5.6.2.2

.. 856REAL_TO_BOOL11.8.5.6.2.3

.. 858WORD_TO_BOOL11.8.5.6.2.4

.. 859BYTE11.8.5.6.3

.. 859BOOL_TO_BYTE11.8.5.6.3.1

.. 861DWORD_TO_BYTE11.8.5.6.3.2

.. 862DWORD_TO_BYTES11.8.5.6.3.3

.. 865REAL_TO_BYTE11.8.5.6.3.4

.. 867WORD_TO_BYTE11.8.5.6.3.5

.. 868WORD_TO_BYTES11.8.5.6.3.6

.. 871DWORD11.8.5.6.4

.. 871BOOL_TO_DWORD11.8.5.6.4.1

.. 872BYTE_TO_DWORD11.8.5.6.4.2

.. 873BYTES_TO_DWORD11.8.5.6.4.3

.. 875REAL_TO_DWORD11.8.5.6.4.4

.. 877STRING_TO_DWORD11.8.5.6.4.5

.. 879WORD_TO_DWORD11.8.5.6.4.6

.. 880WORDS_TO_DWORD11.8.5.6.4.7

.. 882Rad-Deg11.8.5.6.5

.. 882DEG_TO_RAD11.8.5.6.5.1

.. 883RAD_TO_DEG11.8.5.6.5.2

.. 885REAL11.8.5.6.6

.. 885BOOL_TO_REAL11.8.5.6.6.1

.. 886BYTE_TO_REAL11.8.5.6.6.2

.. 888DWORD_TO_REAL11.8.5.6.6.3

.. 889STRING_TO_REAL11.8.5.6.6.4

.. 892WORD_TO_REAL11.8.5.6.6.5

.. 893STRING11.8.5.6.7

.. 893DWORD_TO_STRING11.8.5.6.7.1

.. 895REAL_TO_STRING11.8.5.6.7.2

.. 897WORD11.8.5.6.8

.. 897BOOL_TO_WORD11.8.5.6.8.1

.. 898BYTE_TO_WORD11.8.5.6.8.2

.. 900BYTES_TO_WORD11.8.5.6.8.3

.. 901DWORD_TO_WORD11.8.5.6.8.4

.. 903DWORD_TO_WORDS11.8.5.6.8.5

.. 905REAL_TO_WORD11.8.5.6.8.6

Contents

WPS v2.5X | 13

... 907Counter11.8.5.7

.. 907CTD11.8.5.7.1

.. 910CTU11.8.5.7.2

.. 913CTUD11.8.5.7.3

... 918Data Transfer11.8.5.8

.. 918ARRAYCOPY11.8.5.8.1

.. 921DEMUX11.8.5.8.2

.. 924DEMUX211.8.5.8.3

.. 926ILOAD11.8.5.8.4

.. 928ILOADBOOL11.8.5.8.5

.. 929ISTORE11.8.5.8.6

.. 931ISTOREBOOL11.8.5.8.7

.. 933MUX11.8.5.8.8

.. 936MUX211.8.5.8.9

.. 938ReadRecipe11.8.5.8.10

.. 941SCALE11.8.5.8.11

.. 944SEL11.8.5.8.12

.. 946STORE11.8.5.8.13

.. 948SWAP11.8.5.8.14

.. 949SWAP211.8.5.8.15

.. 951WriteRecipe11.8.5.8.16

... 955Filter11.8.5.9

.. 955LOWPASS11.8.5.9.1

... 957Hardw are11.8.5.10

.. 957IMMEDIATE_INPUT11.8.5.10.1

.. 959IMMEDIATE_OUTPUT11.8.5.10.2

.. 961P_RAMP11.8.5.10.3

.. 965PWM11.8.5.10.4

.. 967READENC11.8.5.10.5

.. 968READENC211.8.5.10.6

.. 971READENC311.8.5.10.7

.. 972READENC411.8.5.10.8

... 974Logic11.8.5.11

.. 974Logic Bit11.8.5.11.1

.. 974RESETBIT11.8.5.11.1.1

.. 977SETBIT11.8.5.11.1.2

.. 979TESTBIT11.8.5.11.1.3

.. 981Logic Boolean11.8.5.11.2

.. 981AND11.8.5.11.2.1

.. 982NOT11.8.5.11.2.2

.. 984OR11.8.5.11.2.3

.. 985XNOR11.8.5.11.2.4

.. 987XOR11.8.5.11.2.5

.. 988Logic Rotate11.8.5.11.3

.. 988ROL11.8.5.11.3.1

.. 990ROR11.8.5.11.3.2

.. 992Logic Shift11.8.5.11.4

.. 992ASHL11.8.5.11.4.1

.. 994ASHR11.8.5.11.4.2

.. 996SHL11.8.5.11.4.3

.. 998SHR11.8.5.11.4.4

... 1000Math11.8.5.12

.. 1000Math Basic11.8.5.12.1

.. 1000ABS11.8.5.12.1.1

WPS v2.5X | 14

.. 1002ADD11.8.5.12.1.2

.. 1004DIV11.8.5.12.1.3

.. 1006MOD11.8.5.12.1.4

.. 1008MUL11.8.5.12.1.5

.. 1010NEG11.8.5.12.1.6

.. 1012SUB11.8.5.12.1.7

.. 1014Math Extended11.8.5.12.2

.. 1014ALOG1011.8.5.12.2.1

.. 1016EXP11.8.5.12.2.2

.. 1018LN11.8.5.12.2.3

.. 1020LOG1011.8.5.12.2.4

.. 1021POW11.8.5.12.2.5

.. 1023ROUND11.8.5.12.2.6

.. 1024SQRT11.8.5.12.2.7

.. 1026TRUNC11.8.5.12.2.8

.. 1027Math Trigonometry11.8.5.12.3

.. 1027ACOS11.8.5.12.3.1

.. 1029ASIN11.8.5.12.3.2

.. 1031ATAN11.8.5.12.3.3

.. 1032ATAN211.8.5.12.3.4

.. 1034COS11.8.5.12.3.5

.. 1036SIN11.8.5.12.3.6

.. 1037TAN11.8.5.12.3.7

.. 1039Math Util11.8.5.12.4

.. 1039MAX11.8.5.12.4.1

.. 1041MIN11.8.5.12.4.2

.. 1043SAT11.8.5.12.4.3

... 1046Module11.8.5.13

.. 1046CALL11.8.5.13.1

.. 1047USERFB11.8.5.13.2

... 1049RTC11.8.5.14

.. 1049INTIME11.8.5.14.1

.. 1053INWEEKDAY11.8.5.14.2

... 1057Screen11.8.5.15

.. 1057SETSCREEN11.8.5.15.1

... 1059String11.8.5.16

.. 1059STR_COMPARE11.8.5.16.1

.. 1063STR_CONCAT11.8.5.16.2

.. 1064STR_COPY11.8.5.16.3

.. 1067STR_COPY_LAST11.8.5.16.4

.. 1070STR_DELETE11.8.5.16.5

.. 1073STR_FIND11.8.5.16.6

.. 1076STR_FIND_LAST11.8.5.16.7

.. 1079STR_INSERT11.8.5.16.8

.. 1082STR_LENGTH11.8.5.16.9

.. 1084STR_REPLACE11.8.5.16.10

... 1087Timer11.8.5.17

.. 1087TOF11.8.5.17.1

.. 1089TON11.8.5.17.2

.. 1093TP11.8.5.17.3

... 1096Tasks11.8.5.18

... 1104Structures11.8.5.19

... 1106Recipes11.8.5.20

.. 1110Screen 11.8.6

Contents

WPS v2.5X | 15

... 1110Alarms11.8.6.1

... 1115Screen Editor11.8.6.2

.. 1127Event Log 11.8.7

.. 1136Setup 11.8.8

... 1136Configuration11.8.8.1

... 1137Configuration Window s11.8.8.2

.. 1137Display11.8.8.2.1

.. 1137Analog11.8.8.2.2

.. 1138Encoder11.8.8.2.3

.. 1138RS23211.8.8.2.4

.. 1139RS48511.8.8.2.5

.. 1139CAN11.8.8.2.6

.. 1140LAN11.8.8.2.7

.. 1140Modbus TCP11.8.8.2.8

.. 1141Clock Settings11.8.8.2.9

.. 1141Language11.8.8.2.10

.. 1142Watchdog11.8.8.2.11

.. 1142Communication 11.8.9

... 1142Online Commands11.8.9.1

... 1145Force I/O11.8.9.2

... 1147Dow nload11.8.9.3

... 1150Hot Dow nload11.8.9.4

.. 1150Overview11.8.9.4.1

.. 1150Enable/Disable Hot Dow nload11.8.9.4.2

.. 1153Restrictions11.8.9.4.3

.. 1155Operation11.8.9.4.4

... 1157Upload11.8.9.5

... 1158Comparison of resource and device11.8.9.6

... 1160Modbus File Manager11.8.9.7

... 1162Communication RS23211.8.9.8

... 1165Communication RS48511.8.9.9

... 116711.9 PSRW

.. 1167Description 11.9.1

... 116711.10 SCA06

.. 1167Description 11.10.1

.. 1168System Markers 11.10.2

.. 1172Oriented Start-Up 11.10.3

.. 1176Auto-Tuning 11.10.4

.. 1178Import from WLP 11.10.5

.. 1181Parameters 11.10.6

... 1181Overview11.10.6.1

... 1183Configuration11.10.6.2

... 1185Read and Write of Parameters11.10.6.3

... 1188Hide/Unhide Parameters and Group of Parameters11.10.6.4

... 1198User Parameters11.10.6.5

.. 1200Ladder 11.10.7

... 1200Coil11.10.7.1

.. 1200DIRECTCOIL11.10.7.1.1

.. 1201IMMEDIATECOIL11.10.7.1.2

.. 1203INVERTEDCOIL11.10.7.1.3

.. 1204RESETCOIL11.10.7.1.4

.. 1205SETCOIL11.10.7.1.5

.. 1206TOGGLECOIL11.10.7.1.6

... 1208Communication Netw ork11.10.7.2

WPS v2.5X | 16

.. 1208CANopen11.10.7.2.1

.. 1208CANopen Overview11.10.7.2.1.1

.. 1209CO_SDORead11.10.7.2.1.2

.. 1213CO_SDOWrite11.10.7.2.1.3

... 1216Compare11.10.7.3

.. 1216COMPEQ11.10.7.3.1

.. 1218COMPGE11.10.7.3.2

.. 1220COMPGT11.10.7.3.3

.. 1222COMPLE11.10.7.3.4

.. 1224COMPLT11.10.7.3.5

.. 1226COMPNE11.10.7.3.6

... 1227Contact11.10.7.4

.. 1227NCCONTACT11.10.7.4.1

.. 1229NOCONTACT11.10.7.4.2

.. 1230NTSCONTACT11.10.7.4.3

.. 1231PTSCONTACT11.10.7.4.4

... 1233Control11.10.7.5

.. 1233PID11.10.7.5.1

... 1238Conversion11.10.7.6

.. 1238BCD11.10.7.6.1

.. 1238BCD_TO_WORD11.10.7.6.1.1

.. 1239WORD_TO_BCD11.10.7.6.1.2

.. 1241BOOL11.10.7.6.2

.. 1241BYTE_TO_BOOL11.10.7.6.2.1

.. 1242DWORD_TO_BOOL11.10.7.6.2.2

.. 1244LREAL_TO_BOOL11.10.7.6.2.3

.. 1245REAL_TO_BOOL11.10.7.6.2.4

.. 1247WORD_TO_BOOL11.10.7.6.2.5

.. 1248BYTE11.10.7.6.3

.. 1248BOOL_TO_BYTE11.10.7.6.3.1

.. 1250DWORD_TO_BYTE11.10.7.6.3.2

.. 1251DWORD_TO_BYTES11.10.7.6.3.3

.. 1254LREAL_TO_BYTE11.10.7.6.3.4

.. 1255REAL_TO_BYTE11.10.7.6.3.5

.. 1257WORD_TO_BYTE11.10.7.6.3.6

.. 1258WORD_TO_BYTES11.10.7.6.3.7

.. 1261DWORD11.10.7.6.4

.. 1261BOOL_TO_DWORD11.10.7.6.4.1

.. 1262BYTE_TO_DWORD11.10.7.6.4.2

.. 1263BYTES_TO_DWORD11.10.7.6.4.3

.. 1265LREAL_TO_DWORD11.10.7.6.4.4

.. 1266REAL_TO_DWORD11.10.7.6.4.5

.. 1268WORD_TO_DWORD11.10.7.6.4.6

.. 1269WORDS_TO_DWORD11.10.7.6.4.7

.. 1271LREAL11.10.7.6.5

.. 1271BOOL_TO_LREAL11.10.7.6.5.1

.. 1272BYTE_TO_LREAL11.10.7.6.5.2

.. 1273DWORD_TO_LREAL11.10.7.6.5.3

.. 1274REAL_TO_LREAL11.10.7.6.5.4

.. 1275WORD_TO_LREAL11.10.7.6.5.5

.. 1276Rad-Deg11.10.7.6.6

.. 1276DEG_TO_RAD11.10.7.6.6.1

.. 1277RAD_TO_DEG11.10.7.6.6.2

.. 1279REAL11.10.7.6.7

Contents

WPS v2.5X | 17

.. 1279BOOL_TO_REAL11.10.7.6.7.1

.. 1280BYTE_TO_REAL11.10.7.6.7.2

.. 1282DWORD_TO_REAL11.10.7.6.7.3

.. 1283LREAL_TO_REAL11.10.7.6.7.4

.. 1284WORD_TO_REAL11.10.7.6.7.5

.. 1286WORD11.10.7.6.8

.. 1286BOOL_TO_WORD11.10.7.6.8.1

.. 1287BYTE_TO_WORD11.10.7.6.8.2

.. 1289BYTES_TO_WORD11.10.7.6.8.3

.. 1290DWORD_TO_WORD11.10.7.6.8.4

.. 1292DWORD_TO_WORDS11.10.7.6.8.5

.. 1294LREAL_TO_WORD11.10.7.6.8.6

.. 1295REAL_TO_WORD11.10.7.6.8.7

... 1297Counter11.10.7.7

.. 1297CTD11.10.7.7.1

.. 1300CTU11.10.7.7.2

.. 1303CTUD11.10.7.7.3

... 1308Data Transfer11.10.7.8

.. 1308ARRAYCOPY11.10.7.8.1

.. 1311DEMUX11.10.7.8.2

.. 1314DEMUX211.10.7.8.3

.. 1316ILOAD11.10.7.8.4

.. 1318ILOADBOOL11.10.7.8.5

.. 1319ISTORE11.10.7.8.6

.. 1321ISTOREBOOL11.10.7.8.7

.. 1323MUX11.10.7.8.8

.. 1326MUX211.10.7.8.9

.. 1328SCALE11.10.7.8.10

.. 1331SEL11.10.7.8.11

.. 1333STORE11.10.7.8.12

.. 1335SWAP11.10.7.8.13

.. 1336SWAP211.10.7.8.14

.. 1338USERERR11.10.7.8.15

... 1341Filter11.10.7.9

.. 1341LOWPASS11.10.7.9.1

... 1344Hardw are11.10.7.10

.. 1344IMMEDIATE_INPUT11.10.7.10.1

.. 1346IMMEDIATE_OUTPUT11.10.7.10.2

.. 1348READENC511.10.7.10.3

... 1351Logic11.10.7.11

.. 1351Logic Bit11.10.7.11.1

.. 1351RESETBIT11.10.7.11.1.1

.. 1353SETBIT11.10.7.11.1.2

.. 1355TESTBIT11.10.7.11.1.3

.. 1357Logic Boolean11.10.7.11.2

.. 1357AND11.10.7.11.2.1

.. 1358NOT11.10.7.11.2.2

.. 1360OR11.10.7.11.2.3

.. 1361XNOR11.10.7.11.2.4

.. 1363XOR11.10.7.11.2.5

.. 1364Logic Rotate11.10.7.11.3

.. 1364ROL11.10.7.11.3.1

.. 1366ROR11.10.7.11.3.2

.. 1368Logic Shift11.10.7.11.4

WPS v2.5X | 18

.. 1368ASHL11.10.7.11.4.1

.. 1370ASHR11.10.7.11.4.2

.. 1372SHL11.10.7.11.4.3

.. 1374SHR11.10.7.11.4.4

... 1376Math11.10.7.12

.. 1376Math Basic11.10.7.12.1

.. 1376ABS11.10.7.12.1.1

.. 1378ADD11.10.7.12.1.2

.. 1380DIV11.10.7.12.1.3

.. 1382MOD11.10.7.12.1.4

.. 1384MUL11.10.7.12.1.5

.. 1386NEG11.10.7.12.1.6

.. 1388SUB11.10.7.12.1.7

.. 1390Math Extended11.10.7.12.2

.. 1390ALOG1011.10.7.12.2.1

.. 1392EXP11.10.7.12.2.2

.. 1394LN11.10.7.12.2.3

.. 1396LOG1011.10.7.12.2.4

.. 1397POW11.10.7.12.2.5

.. 1399ROUND11.10.7.12.2.6

.. 1400SQRT11.10.7.12.2.7

.. 1402TRUNC11.10.7.12.2.8

.. 1403Math Trigonometry11.10.7.12.3

.. 1403ACOS11.10.7.12.3.1

.. 1405ASIN11.10.7.12.3.2

.. 1407ATAN11.10.7.12.3.3

.. 1408ATAN211.10.7.12.3.4

.. 1410COS11.10.7.12.3.5

.. 1412SIN11.10.7.12.3.6

.. 1413TAN11.10.7.12.3.7

.. 1415Math Util11.10.7.12.4

.. 1415MAX11.10.7.12.4.1

.. 1417MIN11.10.7.12.4.2

.. 1419SAT11.10.7.12.4.3

... 1422Module11.10.7.13

.. 1422CALL11.10.7.13.1

.. 1423USERFB11.10.7.13.2

.. 1425Working w ith USERFBs11.10.7.13.3

.. 1425Creating USERFBs11.10.7.13.3.1

.. 1427Adding input/output11.10.7.13.3.2

.. 1430Editing the Ladder11.10.7.13.3.3

.. 1431Using USERFBs11.10.7.13.3.4

... 1432Motion Control11.10.7.14

.. 1432Motion Control Cam11.10.7.14.1

.. 1432MC_CamIn11.10.7.14.1.1

.. 1437MC_CamOut11.10.7.14.1.2

.. 1439MC_CamTableSelect11.10.7.14.1.3

.. 1441MW_CamCalc11.10.7.14.1.4

.. 1446Motion Control Command11.10.7.14.2

.. 1446MC_Pow er11.10.7.14.2.1

.. 1449MC_Reset11.10.7.14.2.2

.. 1451MC_Stop11.10.7.14.2.3

.. 1455MW_IqControl11.10.7.14.2.4

.. 1457Motion Control Gear11.10.7.14.3

Contents

WPS v2.5X | 19

.. 1457MC_GearIn11.10.7.14.3.1

.. 1462MC_GearInPos11.10.7.14.3.2

.. 1465MC_GearOut11.10.7.14.3.3

.. 1466MC_PhasingRelative11.10.7.14.3.4

.. 1469Motion Control Homing11.10.7.14.4

.. 1469MC_FinishHoming11.10.7.14.4.1

.. 1470MC_HomeDirect11.10.7.14.4.2

.. 1473MC_StepAbsoluteSw itch11.10.7.14.4.3

.. 1477MC_StepLimitSw itch11.10.7.14.4.4

.. 1480MC_StepReferencePulse11.10.7.14.4.5

.. 1483Motion Control Move11.10.7.14.5

.. 1483MC_MoveAbsolute11.10.7.14.5.1

.. 1489MC_MoveRelative11.10.7.14.5.2

.. 1495MC_MoveVelocity11.10.7.14.5.3

... 1500RTC11.10.7.15

.. 1500INTIME11.10.7.15.1

.. 1503INWEEKDAY11.10.7.15.2

... 1507Timer11.10.7.16

.. 1507TOF11.10.7.16.1

.. 1509TON11.10.7.16.2

.. 1513TP11.10.7.16.3

... 1516Cam Profiles11.10.7.17

... 1527Structures11.10.7.18

.. 1530Diagnostic 11.10.8

... 1530Monitoring Panel11.10.8.1

.. 1530Main Signals11.10.8.1.1

... 1531Log11.10.8.2

.. 1531Overview11.10.8.2.1

.. 1532Configuration11.10.8.2.2

... 1533Trace11.10.8.3

.. 1533Overview11.10.8.3.1

.. 1534Configuration11.10.8.3.2

... 154011.11 SSW-06

.. 1540Description 11.11.1

.. 1541Parameters 11.11.2

... 1541Overview11.11.2.1

... 1542Configuration11.11.2.2

... 1545Read and Write of Parameters11.11.2.3

... 1548Hide/Unhide Parameters and Group of Parameters11.11.2.4

... 1558User Parameters11.11.2.5

... 156011.12 SSW-07

.. 1560Description 11.12.1

.. 1561Parameters 11.12.2

... 1561Overview11.12.2.1

... 1563Configuration11.12.2.2

... 1565Read and Write of Parameters11.12.2.3

... 1568Hide/Unhide Parameters and Group of Parameters11.12.2.4

... 1578User Parameters11.12.2.5

... 158011.13 SSW-08

.. 1580Description 11.13.1

.. 1581Parameters 11.13.2

... 1581Overview11.13.2.1

... 1583Configuration11.13.2.2

WPS v2.5X | 20

... 1585Read and Write of Parameters11.13.2.3

... 1588Hide/Unhide Parameters and Group of Parameters11.13.2.4

... 1598User Parameters11.13.2.5

... 160011.14 SSW900

.. 1600Description 11.14.1

.. 1601I/O's 11.14.2

.. 1601System Markers 11.14.3

.. 1605Volatile Markers 11.14.4

.. 1606Import from WLP 11.14.5

.. 1609Parameters 11.14.6

... 1609Overview11.14.6.1

... 1611Configuration11.14.6.2

... 1613Read and Write of Parameters11.14.6.3

... 1616Hide/Unhide Parameters and Group of Parameters_211.14.6.4

... 1626User Parameters11.14.6.5

.. 1628Ladder 11.14.7

... 1628Coil11.14.7.1

.. 1628DIRECTCOIL11.14.7.1.1

.. 1629INVERTEDCOIL11.14.7.1.2

.. 1631RESETCOIL11.14.7.1.3

.. 1632SETCOIL11.14.7.1.4

.. 1633TOGGLECOIL11.14.7.1.5

... 1634Communication Netw ork11.14.7.2

.. 1634Modbus RTU11.14.7.2.1

.. 1634Modbus RTU Overview11.14.7.2.1.1

.. 1635MB_MasterControlStatus11.14.7.2.1.2

.. 1637MB_ReadBinary11.14.7.2.1.3

.. 1641MB_ReadRegister11.14.7.2.1.4

.. 1645MB_SlaveStatus11.14.7.2.1.5

.. 1647MB_WriteBinary11.14.7.2.1.6

.. 1651MB_WriteRegister11.14.7.2.1.7

... 1655Compare11.14.7.3

.. 1655COMP_EQ11.14.7.3.1

.. 1657COMP_GE11.14.7.3.2

.. 1659COMP_GT11.14.7.3.3

.. 1661COMP_LE11.14.7.3.4

.. 1663COMP_LT11.14.7.3.5

.. 1665COMP_NE11.14.7.3.6

... 1666Contact11.14.7.4

.. 1666NCCONTACT11.14.7.4.1

.. 1668NOCONTACT11.14.7.4.2

.. 1669NTSCONTACT11.14.7.4.3

.. 1670PTSCONTACT11.14.7.4.4

... 1672Control11.14.7.5

.. 1672PID11.14.7.5.1

... 1677Conversion11.14.7.6

.. 1677BOOL11.14.7.6.1

.. 1677BYTE_TO_BOOL11.14.7.6.1.1

.. 1679DWORD_TO_BOOL11.14.7.6.1.2

.. 1680REAL_TO_BOOL11.14.7.6.1.3

.. 1682WORD_TO_BOOL11.14.7.6.1.4

.. 1683BYTE11.14.7.6.2

.. 1683BOOL_TO_BYTE11.14.7.6.2.1

.. 1685DWORD_TO_BYTE11.14.7.6.2.2

Contents

WPS v2.5X | 21

.. 1686REAL_TO_BYTE11.14.7.6.2.3

.. 1688WORD_TO_BYTE11.14.7.6.2.4

.. 1690DWORD11.14.7.6.3

.. 1690BOOL_TO_DWORD11.14.7.6.3.1

.. 1691BYTE_TO_DWORD11.14.7.6.3.2

.. 1693REAL_TO_DWORD11.14.7.6.3.3

.. 1694WORD_TO_DWORD11.14.7.6.3.4

.. 1696REAL11.14.7.6.4

.. 1696BOOL_TO_REAL11.14.7.6.4.1

.. 1697BYTE_TO_REAL11.14.7.6.4.2

.. 1699DWORD_TO_REAL11.14.7.6.4.3

.. 1700WORD_TO_REAL11.14.7.6.4.4

.. 1702WORD11.14.7.6.5

.. 1702BOOL_TO_WORD11.14.7.6.5.1

.. 1703BYTE_TO_WORD11.14.7.6.5.2

.. 1705DWORD_TO_WORD11.14.7.6.5.3

.. 1706REAL_TO_WORD11.14.7.6.5.4

... 1708Counter11.14.7.7

.. 1708CTD11.14.7.7.1

.. 1711CTU11.14.7.7.2

.. 1714CTUD11.14.7.7.3

... 1719Data Transfer11.14.7.8

.. 1719DEMUX11.14.7.8.1

.. 1721ILOAD11.14.7.8.2

.. 1722ILOADBOOL11.14.7.8.3

.. 1724ISTORE11.14.7.8.4

.. 1725ISTOREBOOL11.14.7.8.5

.. 1727MUX11.14.7.8.6

.. 1730SEL11.14.7.8.7

.. 1732STORE11.14.7.8.8

.. 1734USERERR11.14.7.8.9

... 1735Filter11.14.7.9

.. 1735LOWPASS11.14.7.9.1

... 1737Logic11.14.7.10

.. 1737Logic Bit11.14.7.10.1

.. 1737RESETBIT11.14.7.10.1.1

.. 1739SETBIT11.14.7.10.1.2

.. 1741TESTBIT11.14.7.10.1.3

.. 1743Logic Boolean11.14.7.10.2

.. 1743AND11.14.7.10.2.1

.. 1744NOT11.14.7.10.2.2

.. 1746OR11.14.7.10.2.3

.. 1747XNOR11.14.7.10.2.4

.. 1749XOR11.14.7.10.2.5

.. 1750Logic Rotate11.14.7.10.3

.. 1750ROL11.14.7.10.3.1

.. 1752ROR11.14.7.10.3.2

.. 1754Logic Shift11.14.7.10.4

.. 1754ASHL11.14.7.10.4.1

.. 1756ASHR11.14.7.10.4.2

.. 1758SHL11.14.7.10.4.3

.. 1760SHR11.14.7.10.4.4

... 1762Math11.14.7.11

.. 1762Math Basic11.14.7.11.1

WPS v2.5X | 22

.. 1762ABS11.14.7.11.1.1

.. 1764ADD11.14.7.11.1.2

.. 1766DIV11.14.7.11.1.3

.. 1768MOD11.14.7.11.1.4

.. 1770MUL11.14.7.11.1.5

.. 1772NEG11.14.7.11.1.6

.. 1774SUB11.14.7.11.1.7

.. 1776Math Extended11.14.7.11.2

.. 1776ALOG1011.14.7.11.2.1

.. 1778EXP11.14.7.11.2.2

.. 1780LN11.14.7.11.2.3

.. 1782LOG1011.14.7.11.2.4

.. 1783POW11.14.7.11.2.5

.. 1785ROUND11.14.7.11.2.6

.. 1786SQRT11.14.7.11.2.7

.. 1788TRUNC11.14.7.11.2.8

.. 1789Math Trigonometry11.14.7.11.3

.. 1789ACOS11.14.7.11.3.1

.. 1791ASIN11.14.7.11.3.2

.. 1793ATAN11.14.7.11.3.3

.. 1794ATAN211.14.7.11.3.4

.. 1796COS11.14.7.11.3.5

.. 1798SIN11.14.7.11.3.6

.. 1799TAN11.14.7.11.3.7

.. 1801Math Util11.14.7.11.4

.. 1801MAX11.14.7.11.4.1

.. 1803MIN11.14.7.11.4.2

.. 1805SAT11.14.7.11.4.3

... 1808Module11.14.7.12

.. 1808USERFB11.14.7.12.1

... 1809Timer11.14.7.13

.. 1809TOF11.14.7.13.1

.. 1812TON11.14.7.13.2

.. 1816TP11.14.7.13.3

... 1819RTC11.14.7.14

.. 1819INTIME11.14.7.14.1

.. 1823INWEEKDAY11.14.7.14.2

... 1827Structures11.14.7.15

.. 1829Communication 11.14.8

... 1829Force I/O11.14.8.1

..183212 WComm
... 183212.1 Introduction

... 183412.2 Configuration

.. 1834Menus 12.2.1

.. 1838Quickstart Guide for FTP 12.2.2

.. 1841Configuration File 12.2.3

... 184512.3 Add/Remove Connections

Index 1848

WPS v2.5X

WPS v2.5X | 23

1 WPS v2.5X

Technical Support: Contact a local branch or representative.

Contact us: http://www.weg.net

Publication date: 03/2019

Start

Click the Welcome button to start.

Welcome

Introduction

WPS v2.5X | 24

2 Introduction

2.1 Welcome

Welcome to the WPS!

WPS v2.5X is an innovative integrated tool to access several families of WEG products, adding the concepts
of:

Multi-Products, aiming at meeting wide range of WEG products;
Multi-Use, in order to enable:
o Equipment configuration,
o Equipment programming in Ladder language,
o Monitoring of equipment, and
o Assistance for creation and configuration of applications in the automation area.

The programming environment of the Ladder language meets the requirements of IEC 61131-3.

It is strongly recommended that the user is familiar with these guidelines and concepts that this standard
presents in order to use the software optimally.

2.2 System Requirements

Item Description

Plataform Window s 7 or greater

Processor
Minimum: Core i3

Recommended: Core i5

Memory
Minimum: 1 GB

Recommended: 4 GB

Screen Resolution 1024x768 or greater

Disk Space 2 GB

Communication USB, Ethernet TCP/IP and Serial Port

2.3 Supported Equipments

The following table shows the equipments and firmware versions supported by WPS v2.5X :

Introduction

WPS v2.5X | 25

Equipment
Ladder Available

Trace Trend Parameters
WLP WPS

PLC300 - v1.76+ - v1.76+ v1.76+

SCA06 <v2.00 v2.00+ v1.10+ v1.10+ v1.10+

CFW300 - v1.00+ - v1.00+ v1.00+

CVW500 v1.00+ - - v1.00+ v1.00+

PSRW - - - v1.00+ v1.00+

SSW900 - v1.10+ - v1.00+ v1.00+

CFW100 <v3.00 v3.00+ - v3.00+ v3.00+

CFW-11 v1.00+ - v1.00+ v1.00+ v1.00+

CFW500 v1.10+ - - v1.10+ v1.10+

CFW501 v1.30+ - - v1.30+ v1.30+

MW500 v1.50+ - - v1.50+ v1.50+

SSW06 v1.40+ - - v1.30+ v1.30+

SSW07 - - - v1.20+ v1.20+

SSW08 - - - v1.30+ v1.30+

WLP: WEG Ladder Programming

2.4 Copyright Notice

This computer program is protected by international treaties and copyright laws. Its partial or total
reproduction or distribution without previous authorization may result in several civil and criminal penalties,
subject to penalties provided in the law.

2.5 Safety Notice

Using this software may alter the drive's operation and performance. The user is responsible for adopting the
necessary precautions in order to guarantee the safety of the equipment and persons involved. Before
applying this Software, carefully read the Online Help Instructions. Non compliance with these instructions
may cause serious damage to the device and result in severe bodily injury.

What's New

WPS v2.5X | 26

3 What's New

3.1 What's New - This Version

WPS v2.5X

New Functions:

Included CFW500 V1.10+;
Included CFW501 V1.30+;
Included MW500 V1.50+;
Included CFW-11 V1.00+;
Included SSW06 V1.30;
Included SSW07 V1.20;
Included SSW08 V1.30.

Enhancements:

Corrections in the manual (help).

3.2 What's New - Previous Versions

WPS V2.40

Functionalities:

Configuration Wizard for CFW300, PSRW, SSW900;
Main signal monitoring window's - CFW300, SSW900;
CALL block for PLC300 since V3.41 and V4.11 (according to hardware model);
USB driver enabling communication with PSRW;
Enhanced search system (includes search by blocks, indexed variables, texts).

Improvements:

Corrections in the manual (help);
WComm (communication manager supporting FTP protocol);
WEG USB driver supports Windows 10 (x86 and x64) - including build 1607 or newer;
New markers addresses for setting up HMI LEDs (PLC300 V4.1X).

WPS V2.30

Functionalities:

Included CFW300 V1.0X and V1.2X;
Included PLC300 V3.3X;
Windows 10 support (x86 and x64);
Automatic installation of the WEG USB driver;
Automatic installation of the FTDI driver;
Welcome window with quick access to some functions;
Improved communication configuration.

Improvements:

What's New

WPS v2.5X | 27

Improved performance and trend graph interface;
Improved organization of menus.

WPS V2.20

Functionalities:

Function to remove unused variables
Function to search and replace variables in the resource
Variables filter option inside the variables table

Improvements:

JRE (Java) embedded into WPS installation
Improvements in trend performance
Improvements in design, icons, windows ...
Main resource set was simplified
Menu actions restructured and actions sensitive to the context
Configuration import with validation of .bkp file
Alphabetic ordering of configurations and resources
Support to bitfields in parameters table
Parameter monitoring inside ladder

WPS V2.10

Functionalities:

PLC300 v2.30 with support to Hot Download and Watchdog
Importer/Conversor from WLP Projects to WPS to the equipment SCA06
Full impression of configurations and resources
Variables Monitoring with functionality to backup and restore variables values
Created window with information about the device connected
Create window with additional information such author, description and client about the resource

Improvements:

WPS Help rewriten to all ladder blocks
Window of variable selection changed to a table format with filter options
Move variables from one block to another in the ladder editor
Search of variables with filters
Support the movement of multiple variables simultaniously in structures and also record of last type added
for future additions
USB Driver with support to Windows 8.1

WPS V2.00

Functionalities:

Support to SCA06 starting at firmware version v2.00, agregatting the functios of SuperDrive G2 and WLP
PLC300 v2.10 with support to Strings

What's New

WPS v2.5X | 28

WPS V1.80

Functionalities:

PLC300 V2.00 Support (Hardware Version 2)
P_RAMP Block (Pulse Train)

WPS V1.70

Functionalities:

Upload and download variable data, this function allows to preserve variables values during the program
download. This function is compatible with firmware v1.70 or above.
Export and download binaries
Creation of "text input" component on screen editor

Improvements:

Project management:
Creation of multiple CANopen configurations
Possibility of association of a ladder to a task on the last wizard step during the new ladder wizard
Ladder editor:
Optimization in ladder diagram editor, reducing the use of CPU and memory
Dragging variable from variables list and dropping it into the block argument
RUNG title length increased
Number of elements per RUNG increased
Automatic tag break
Screen name display during configuration of F buttons in screen editor
Optimization in monitoring to reduce the response time
Optimization in compiler to reduce compile-time
Clock synchronization between the computer clock and project setup

Corrections:

Correction during removal of POU from task, where changes are not saved when another action is not made
in sequence
Correction in the compiler when the same POU was linked to more than one task
Correction of lock during the load of variables table when large structure type is used
Correction for performance increase during search of structure fields
When the component "numeric input" was configured as INT and contains decimal digits the limit values
were not being compiled correctly
Unset of main selection during resource version change
Function keys were not working when used with variables of type BOOL with size bigger than 0 (zero), the
compiler was not generating the correct memory address for this variables
SD Card password was being stored even with the related option disabled, the compiler was not checking
the signal of SD Card password
During compiling errors where the variable does not exist anymore, the compiler was not displaying the
variable name
When two variable nodes of structures were expanded on variables table at the same time one of the
structures displays the variables names as ???
The variables sampled in event log were not displaying the correct values
Correction of functional deviation in the compiler when any argument from the USERFB was a member of a

What's New

WPS v2.5X | 29

structure or an instance. In this case the number of bits that was being considered was the size of the
whole structure, when the correct should be only the size of this member
Correction of functional deviation in the compiler when distinct ladders were calling USERFB instances with
the same name, occasionally, the compiler was inverting the call of USERFB's. The compiler was
overwriting the arguments file from the USERFB, when the name of instance was the same
Do not allow creation of folder and files related to USERFB with invalid names
Block of "text" component editing when it reaches his limit size
Alarm compilation was not displaying correct variables names in case of compiling errors
Correction of validation on new task creation
During compilation in case of duplicated variables the compiler was not displaying the duplicated variable
name
Correction into resource comparison, in specific situations in Ladder files, some small differences are not
being detected by the function

WPS V1.60

Functionalities:

USERFB User Function Block
Comparison of the resource in the application to a resource of the device
Download of the device setup and CANopen configuration
New faster and easy-to-use screen editor
Options to enable and disable alarms on the editor

Improvements:

Project management:
"Save as..." in the resource configuration
"Search" for the variables in all the resource
Properties of the resource folder
Edition of structure members
Indication in the files open on the editor if they belong to the main selection
Highlight on the programs not used in any tasks
Link on the output window of the compiler
Alarm keys:
Automatic resizing of the Message component
Shortcut keys in the alarm edition
Printing of the screens with their properties
Ladder editor:
Allow to change the contact or coil type already inserted in the ladder
Change of the output variables of the BYTE counters for BOOL to use in contacts
Variables:
Possibility to erase multiple variables from the variable window
Disable the variable window when closing or changing the resource selection
Selection of the variable address by means of the Modbus address

Corrections:

Increase of the number of retries before displaying the error messages during the online monitoring
Correction of fault when saving the renamed variables. After renaming the variables, the save button was not
being enabled and the changes were not being saved.
Change of the default .csv variable importation file from "," to ";".
Locking of the renaming action in the GLOBAL_IO group.

What's New

WPS v2.5X | 30

Change of the maximum memory area size of the screens
Compiler presented error when compiling structure with invalid element. Change to accept repeated variables
in GLOBAL_IO group.
32-bit data types (DWORD, DINT, UDINT, REAL) enabled for the network variables
Fault in the compilation of the watchdog variables of the start, stop and main tasks
Fault in the compilation of String variables using the STRING# syntax in the ReadRecipe and WriteRecipe
blocks. Correction to generate error in this situation
Fault when using the STORE block of a REAL variable for a member of a REAL structure
Correction of a fault when saving the monitoring variables. The new variables created were not being saved.
Correction of the ordering of the numerical fields in the variable table. .When ordering the table, the
numerical fields were not correctly ordered
Locking of the edition of system variables. It was possible to edit the variable and duplicate it.
Correction of the fault in the resource exportation. Not all the internal files were being copied.
Correction of the fault when importing resource with the override option enabled. The configuration was not
being overridden correctly.
Correction to remove the selection edge of the component after copying components on different screens.
Correction to reduce the memory consumption when loading the screens.
Problem in the alignment of the structures containing the BOOL data type. It was observed that the
monitoring of the BOOL array was presenting incorrect values.
Correction of the edition of the array of the SDO_Write block.

WPS V1.50

Functionalities:

Program upload
Force I/O
Language configuration in the PLC300 setup
Option to display variables on the alarm screens
Option of filling in the fields "Numeric Input" and "Numeric Output" with zeros on the user’s screens
Download option:
Initialize output and volatile variables
Stop/Start the execution of the program automatically
Online command menu for the password-protected operations of recording and loading program, setup and
firmware on the SD card.

Improvements:

Printing of the ladder diagrams

Corrections:

Increase the number of retries before displaying the error messages during the online monitoring
Correction of fault when recording the renamed variables. After renaming the variables, the save button was
not being enabled and the changes were not being recorded.
Change of the default .csv variable import file to ";" instead of ",".
Locking of the renaming action in the GLOBAL_IO group.
Change of the maximum memory area size of the screens
Compiler presented error when compiling the structure with invalid element. Change to accept repeated
variables in GLOBAL_IO group.
32-bit data types (DWORD, DINT, UDINT, REAL) enabled for the network variables
Fault in the compilation of the watchdog variables of the start, stop and main tasks
Fault in the compilation of String variables using the STRING# syntax in the ReadRecipe and WriteRecipe

What's New

WPS v2.5X | 31

blocks. It was corrected to generate error in this situation
Fault when using the STORE block of a REAL variable for a member of a REAL structure
Correction of a fault when recording the monitoring variables. The new variables created were not being
recorded
Correction of the ordering of the numerical fields in the variable table. When ordering the table, the numerical
fields were not correctly ordered
Locking of the system variables edition. It was possible to edit the variable and duplicate it.
Correction of the fault in the resource export. Not all the internal files were being copied.
Correction of the fault when importing resource with the override option enabled. The configuration was not
being overridden correctly.
Correction to remove the component selection edge after copying component on different screens.
Correction to reduce the memory consumption when loading the screens.
Problem in the alignment of the structures containing the BOOL data type. It was observed that the
monitoring of the BOOL array was presenting incorrect values.
Correction in the edition of the SDO_Write block array.

WPS V1.40

Functionalities:

WPS translated to english and spanish
Update center

Corrections:

Move variables between groups by the ladder editor
Open modbus file manager

WPS V1.30

Functionalities:

Variables Editor Update
Ethernet configuration at Setup
Structure Configuration
Recipe Configuration
Event Log Configuration
Modbus File Manager

Ladder Editor:

Changes in the Desktop
Use of Literals
Use of Arrays
Use of Instances and Structures
Function Blocks Optional Arguments
Copy/Paste New Features
Online Monitoring New Features

Corrections:

Optimization of the ladder editor so as to guarantee ladder files with up to 200 rungs and moderate memory
and CPU consumption. In such situation, the 1.20 version of WPS presented slow performance and

What's New

WPS v2.5X | 32

crashes.

PLC300:

New Features and Corrections of PLC300.

WPS V1.20

Communication with the PLC300 V1.2X equipment,
Task programming,
Change in tag addresses for compatibility with Modbus,
Tool to import/export projects,
Checking the PLC300 firmware version during download,
Stop/run programs as global actions,
Environment persistence when exiting,
Improvements in communication,
Download options:
o Initialize retentive variables,
o Clear alarm history,
o Font code download.

Installation/Uninstallation

WPS v2.5X | 33

4 Installation/Uninstallation

4.1 Before Installing

Check the following items before installing the WPS v2.5X:

If the PC meets the minimum requirements;
If the version of the WPS v2.5X is compatible with your equipment; and
If your current user account has administrator privileges to install the software.

4.2 Installing

When installing a newer version of WPS it is recommended that the previous version be removed first and the
system be rebooted, to make sure that the new installation is performed correctly.

Close all running programs to avoid interference with the installation process and follow the steps below.

1. Double-click the installer icon to start the installer. The installation program will start and a welcome window
will appear.

2. In the installation wizard, respond to the License Agreement, then press Next button.
3. Specify an empty folder inside which the WPS v2.5X will be installed. Make sure the installation location is

correct and that there is sufficient disk space for installation.
4. Confirm to create an empty folder.
5. Select the type of installation you want.
6. Select the program group to create the shortcuts for the WPS v2.5X.
7. Select shortcuts for additional programs: create a shortcut on the desktop and create a shortcut for quick

start.
8. Click the Install button to start installation.
9. Click the Finish button to complete the setup.

4.3 Uninstalling

If necessary, remove the WPS v2.5X by using the following procedures.

NOTE!
Always use the Add or Remove Programs application to remove WPS. Do not delete files and
folders manually.

1. From the Start menu, select Control Panel.
2. Double click on the Add or Remove Programs button.
3. Select WPS v2.5X from the list, and click on the Remove button.
4. Follow the instructions to remove the software.

Getting to Know the Environment

WPS v2.5X | 34

5 Getting to Know the Environment

5.1 Environment

The main window of WPS v2.5X may be divided in 6 main parts:

1. Menus: show the several options for editing, visualization, communication, and help in the development
environment;

2. Toolbar: displays the main commands of the software;
3. Configurations Window: shows the tree including the open Configuration structure;
4. Editor Window: main part of the development environment where the edition of the components that will

form the source file takes place;
5. Palette Window: includes the components to be inserted into the editor through drag'n drop;
6. Output Window: shows compilation and download messages.

5.2 Configuration Structure

The WPS software follows the resolutions of the standard IEC 61131-3.

Therefore, every application developed on it has a configuration with the following hierarchical structure:

Configuration: is at the highest level of the hierarchy, defining all the elements contained in a software
application that interact to perform the control functions.
o Resource: second level of the hierarchy, represents any element with processing capacity to implement

programs. In the WPS, resources are independent from each other, and each one has a linked product to
it. Global variables in an application are in this scope.

Getting to Know the Environment

WPS v2.5X | 35

POU (Program Organization Unit): describe the instructions to be executed, in order to be
implemented and how they interact with each other. Function blocks, functions and programs are
contained in this category. In the WPS, the POU that stands out is the Ladder Diagram. Local variables
of an application are in this scope, each confined to its own POU.
Tasks: processes that control the order and the execution time of the POUs.

The following figure shows the layout of this hierarchy in the WPS.

Lettering:

1. Configuration;
2. Resource;
3. POUs;
4. Tasks;

Quick Start

WPS v2.5X | 36

6 Quick Start

6.1 Welcome Window

This chapter contains some basic information so that you get familiar with the software.

We will start by the welcome window.

The welcome window appears when the program is started for the first time.

The following options are available in this window:

Quick Monitoring of Parameters
New Configuration
Open Configuration
Import Configuration

There is also one more option, Always display welcome window, which will be explained below.

The user can also close this window without selecting any of the options and use his/her own working
methodology.

The following figure shows the WPS welcome window.

Quick Monitoring of Parameters

The quick monitoring of parameters allows viewing and changing the parameters online, but it is possible
neither to create a new configuration, nor to save the parameters on the computer.

Quick Start

WPS v2.5X | 37

1) Function Selection

Click the option Quick Monitoring of Parameters.

2) Communication Configuration

The next window defines the options for communication with the equipment.

Quick Start

WPS v2.5X | 38

3) Select the Communication Options

Choose the correct communication options.

If you select one equipment, the default communication configuration of the equipment will be loaded to the
window.

However, check that the window configuration is the same as of the equipment. If not, update this window
according to the equipment configuration.

Quick Start

WPS v2.5X | 39

4) Testing the Communication

You can check if the communication is correct by clicking the Test button in this window.

The field is refreshed. The connected equipment appears in the status field.

Quick Start

WPS v2.5X | 40

Then click OK.

5) Monitoring in Progress

A window containing all the parameters of the equipment is shown.

The Online field displays the real value of the parameters on the equipment, and most parameters allow
modification. Reading parameters cannot be changed.

Quick Start

WPS v2.5X | 41

6) Close the Window

In order to end the monitoring, click the Close button in the window.

Quick Start

WPS v2.5X | 42

New Configuration

This creates a new configuration.

1) Function Selection

Click the New Configuration option.

Quick Start

WPS v2.5X | 43

From this step on, see Creating New Configuration for further details.

Open Configuration

It allows opening a configuration created previously.

1) Function Selection

Click the Open Configuration option.

2) Open Configuration Window

Quick Start

WPS v2.5X | 44

All configurations are displayed in a window.

3) Configuration Selection

 Select the desired configuration and click the Open Configuration button.

4) Configuration Window

Quick Start

WPS v2.5X | 45

At this moment, the configuration opens. In the configuration window, you can view the configuration and the
resources that are part of the configuration.

Import Configuration

It imports a configuration previously generated by the WPS.

1) Function Selection

Click the Import Configuration option.

2) Import Window

Click the ... button in order to open the selection of the backup file containing the configuration that you wish
to import.

Quick Start

WPS v2.5X | 46

3) Backup File Selection

Select the file with the bkp extension that you wish to import and click Open.

Quick Start

WPS v2.5X | 47

4) BKP file to Be Imported

The Backup File field is filled out with the file selected in the previous step.

Click Next to continue.

Quick Start

WPS v2.5X | 48

5) Configuration Location

Click Finish to import and end the wizard.

Quick Start

WPS v2.5X | 49

6) Imported Configuration

The imported configuration can be viewed in the output window.

In the configuration window, you can view the imported configuration and its resources.

Quick Start

WPS v2.5X | 50

Always Show Welcome Window Option

The Always show welcome window option allows the window to be displayed in the initialization of the
WPS.

This option is in the lower part of the Welcome Window.

Uncheck this option if you do not wish to see the welcome window in the next initialization.

You can enable this option later in Help > Welcome.

Quick Start

WPS v2.5X | 51

6.2 Creating New Configuration

There are two situations in which a new configuration may be created:

Equipment is online (connected to the WPS)
Equipment is offline.

Examples

Equipment is online:

New Configuration - Online Equipment

Equipment Offline:

New Configuration - Offline Equipment

Quick Start

WPS v2.5X | 52

6.3 New Configuration - Online Equipment

In the following example, we will create a configuration with the CFW300. The windows may be different if other
equipments are configured.

CFW300

1) New Configuration Menu Item/Button

In the File menu, click New Configuration.

You can also use the keyboard shortcut (Ctrl+Shift+C) or the New Configuration button on the Toolbar:

2) New Configuration Window

A window will pop up prompting you to enter the configuration name and the first resource to be created. Enter
the names in the respective fields and click Next.

Quick Start

WPS v2.5X | 53

3) Communication Configuration

The next window defines the options for communication with the equipment.

Quick Start

WPS v2.5X | 54

4) Select the Communication Options

Choose the correct communication options.

If you select one equipment, the default configuration of the communication of the equipment will be loaded to
the window.

Still, check that the window configuration is the same as of the equipment. If not, update this window
according to the equipment configuration.

Quick Start

WPS v2.5X | 55

NOTE!
In this example, the CFW300-CUSB accessory is being used, which appears in Windows as a
USB serial port (virtual COM port);
When the cable is connected to the personal computer/equipment, the Windows device manager
informs the name of the USB serial port which was created.

5) Testing the Communication

You can check if the communication is correct by clicking the Test button in this window.

The status field is refreshed. The connected equipment appears in the status field.

Quick Start

WPS v2.5X | 56

Then click Next.

6) Equipment Selection

The window shows the equipment that is connected to the resource that was created.

Quick Start

WPS v2.5X | 57

7) Read ID

If you click the Read ID button, a window containing the information on the equipment will open. Click OK to
close it.

In order to go to the next step, click Next.

8) Import from WLP

Quick Start

WPS v2.5X | 58

A new window pops up enabling to import from the CFW100 a Ladder project developed on the WLP (WEG
Ladder Programmer).

Click Finish to close the wizard.

9) Configuration Tree

After those steps, the tree with the configurations should look like the following image.

Quick Start

WPS v2.5X | 59

10) Resource Properties

The settings made in the setup can be changed later in resource properties.

Quick Start

WPS v2.5X | 60

NOTE!
Depending on the equipment, new windows may appear from this step on, with initial settings
and oriented start-ups.

6.4 New Configuration - Offline Equipment

In the following example, we will create a configuration with the CFW300. The windows may be different if other
equipments are configured.

CFW300

1) New Configuration Menu Item/Button

In the File menu, click New Configuration.

Quick Start

WPS v2.5X | 61

You can also use the keyboard shortcut (Ctrl+Shift+C) or the New Configuration button on the Toolbar:

2) New Configuration Window

A window will pop up prompting you to enter the configuration name and the first resource to be created. Enter
the names in the respective fields and click Next.

3) Communication Configuration

The next window defines the options for communication with the equipment.

Quick Start

WPS v2.5X | 62

4) Select the Communication Options

Choose the correct communication options.

If you select one equipment, the default communication configuration of the equipment will be loaded.

Quick Start

WPS v2.5X | 63

Depending on the physical layer, it will be necessary to review this configuration when the equipment is
connected to the WPS.

For example, if the CFW300-CUSB accessory is used on the CFW300, Windows creates a USB serial port
which is only known at the moment of the connection of the equipment and personal computer.

5) Testing the Communication

At this moment, it is not possible to test the communication (equipment is not connected).

Thus, when you click Test, the status indicates Equipment offline.

Quick Start

WPS v2.5X | 64

6) Equipment Selection

The window shows the equipment that is connected to the resource that was created.

Quick Start

WPS v2.5X | 65

7) Read ID

If you click the Read ID button, as there is no equipment connected, a fault window pops up (Device
connection Failure). Click OK to close it.

In order to go to the next step, click Next.

8) Import from WLP

Quick Start

WPS v2.5X | 66

A new window pops up enabling to import from the CFW100 a Ladder project developed on the WLP (WEG
Ladder Programmer).

Click Finish to close the wizard.

9) Configuration Tree

After those steps, the tree with the configurations should look like the following image.

Quick Start

WPS v2.5X | 67

10) Resource Properties

The settings made in the setup can be changed later in resource properties.

Quick Start

WPS v2.5X | 68

6.5 Creating New Resource

A new resource may be created within a configuration.

There are 2 situations:

Equipment is online (connected to the WPS)
Equipment is offline.

Example

Equipment is online:

New Resource - Online Equipment

6.6 New Resource - Online Equipment

In the following example, we will create a new resource with the CFW300. The windows may be different if
other equipments are configured.

CFW300

Quick Start

WPS v2.5X | 69

1) New Resource Menu Item/Button

In the File menu, click New Resource.

You can also use the keyboard shortcut (Ctrl+Shift+R) or the New Resource button on the Toolbar:

2) New Configuration Window

A window will pop up prompting you to enter the configuration name and the first resource to be created. Enter
the names in the respective fields and click Next.

Quick Start

WPS v2.5X | 70

3) Communication Configuration

The next window defines the options for communication with the equipment.

4) Select the Communication Options

Choose the correct communication options.

If you select one equipment, the default configuration of the communication of the equipment will be loaded to
the window.

Still, check that the window configuration is the same as of the equipment. If not, update this window
according to the equipment configuration.

Quick Start

WPS v2.5X | 71

NOTE!
In this example, the CFW300-CUSB accessory is being used, which appears in Windows as a
USB serial port (virtual COM port);
When the cable is connected to the personal computer/equipment, the Windows device manager
informs the name of the USB serial port which was created.

5) Testing the Communication

You can check if the communication is correct by clicking the Test button in this window.

The status field is refreshed. The connected equipment appears in the status field.

Quick Start

WPS v2.5X | 72

Then click Next.

6) Equipment Selection

The window shows the equipment that is connected to the resource that was created.

Quick Start

WPS v2.5X | 73

7) Read ID

If you click the Read ID button, a window containing the information on the equipment will open. Click OK to
close it.

In order to go to the next step, click Next.

8) Import from WLP

Quick Start

WPS v2.5X | 74

A new window pops up enabling to import from the CFW100 a Ladder project developed on the WLP (WEG
Ladder Programmer).

Click Finish to close the wizard.

9) Configuration Tree

After those steps, the tree with the configurations should look like the following image.

Quick Start

WPS v2.5X | 75

10) Resource Properties

The settings made in the setup can be changed later in resource properties.

Quick Start

WPS v2.5X | 76

NOTE!
Depending on the equipment, new windows may appear from this step on, with initial settings
and oriented start-ups.

6.7 Pop-up Menu

The popup menu is known as context menu.

The pop-up menu is a floating menu accessed with the second or third button of the mouse, which enables
quick access to the options related to the object selected by the cursor.

On the WPS, a pop-up menu adds options to make some operations simpler:

Pop-up Menu - Configuration

Pop-up Menu - Resource

6.8 Pop-up Menu - Configuration

The configuration pop-up menu provides some functions described below.

Quick Start

WPS v2.5X | 77

Click the link for quick access:

New Configuration
New Resource
- - -
Save As...
Rename...
Delete
- - -
Export Binaries for Download...
Export Configuration
- - -
Open in Explorer
- - -
Print
- - -
Properties

New Configuration

See the section Creating New Configuration in order to create a configuration.

New Resource

See the section Creating New Resource in order to create a resource.

Quick Start

WPS v2.5X | 78

Save As...

In order to duplicate a configuration, click Save As in the pop-up menu.

In the Name field, enter the configuration new name.

Click OK to accept or
Click Cancel in order to cancel the operation.

Rename...

In order to rename a configuration, click Rename in the popup menu.

Enter the new name.

Click OK to accept or
Click Cancel in order to cancel the operation.

Delete

In order to delete a configuration, click Delete in the pop-up menu.

A message requests confirmation to delete a configuration.

Click OK to delete or
Click Cancel in order to cancel the operation.

Export Binaries for Download

The WPS v2.5X compiler generates binary files from the source files in the resource. When these files are
transferred to the machine, they are interpreted and executed.

The export binaries for download functionality encapsulates the binaries files into a .bbp file. This .bbp file can
be redistributed, but the original source file can not be viewed or changed.

1) Export from the Configuration (Pop-up Menu)

Right-click the configuration that contains the resource to be exported, and then, in the popup menu, click
Export Binaries for Download.

Quick Start

WPS v2.5X | 79

2) Export from the Menu Item

The Export Binaries for Download menu item can also be used to export.

In the File menu, click Export, and then Export Binaries for Download.

Quick Start

WPS v2.5X | 80

3) Configuration Selection

A window of the export wizard will open, displaying the name and path of the configuration containing the
resource to be exported.

Click the ... button in order to modify those data.

Then click Next.

Quick Start

WPS v2.5X | 81

4) Resource Selection

Then the resource selection screen will pop up, containing the binaries to be selected for exportation.

Select the desired resource and click Next.

Quick Start

WPS v2.5X | 82

5) Error Exporting

If the exported resource has not been previously compiled, an error message will pop up.

Quick Start

WPS v2.5X | 83

Click Cancel to exit.

Compile the resource and return to the first step of this tutorial.

NOTE!
Always compile the desired resource before exporting its binary files.

6) Select Options

The next screen is similar to the resource download screen, enabling the configuration of several download
options.

Refer to the section Download for further information.

The last checkbox defines whether those settings can be changed at the moment of the download of the
binaries.

Quick Start

WPS v2.5X | 84

NOTE!
Download options change depending of the resource selected.

7) Location of the Exported File

Finally, one last screen allows defining the name of the file and its location. Click the ... button in order to
change those data.

This screen also allows entering a password to protect the file. If desired, check the checkbox and enter the
password.

Then click Finish.

Quick Start

WPS v2.5X | 85

Export Configuration

The WPS v2.5X allows the configurations to be exported to a backup file in the .bkp format.

That simplifies sending a configuration to another machine.

You should always use this procedure to prevent file corruption.

1) Export from the Configuration (Pop-up Menu)

Right-click the configuration to be exported, and then, in the pop-up menu, click Export Configuration.

Quick Start

WPS v2.5X | 86

2) Export from the Menu Item

The Export Configuration menu item can also be used to export.

In the File menu, click Export, and then Export Configuration.

Quick Start

WPS v2.5X | 87

3) Configuration Selection

The export wizard will open, displaying the name and path of the configuration to be exported.

Click the ... button to modify those data.

Then click Next.

Quick Start

WPS v2.5X | 88

4) Resource Selection

Then a screen to select the resources to be exported to the file will pop up.

Select the resources you wish to export and click Next.

Quick Start

WPS v2.5X | 89

5) Select Options

Finally, one last screen allows defining the name of the backup file and its location.

Click the ... button in order to modify those data.

This screen also allows entering a password to protect the file. If desired, check the checkbox and enter the
password.

Then click Finish.

Quick Start

WPS v2.5X | 90

6) Wait until Finish

In the exit window, you can view messages informing generation of the exported configuration.

Open in Explorer

Open Windows Explorer in the configuration folder.

The user can view the content of the folder in Windows Explorer.

Quick Start

WPS v2.5X | 91

Print

Select the option that you wish to print.

Click OK in order to print or
Click Cancel in order to cancel the operation.

Properties

Click the Properties item, and a window will pop up with the following items:

Name: configuration name;
Path: configuration path;
Size: configuration size.

6.9 Pop-up Menu - Resource

The pop-up menu of the resource provides some functions described below.

Click the link for quick access:

Define as Main Resource
New Resource
- - -
Save As...

Quick Start

WPS v2.5X | 92

Rename...
Delete
- - -
Print
- - -
Properties

Define as Main Resource

When a configuration has several resources, the resource in use must be defined as main resource.

In order to define a resource as main resource, click the Define as Main Resource item in the pop-up menu.

After clicking the menu item, the resource will show in bold.

NOTE!
Remember to always set a resource you wish to work as main resource, preventing download
and editing errors.

New Resource

See the section Creating New Resource for details on creating a new resource.

Save As...

In order to duplicate a resource, click Save As in the pop-up menu.

In the Name field, enter the new name of the resource and click OK.

Quick Start

WPS v2.5X | 93

The new resource can be viewed in Configurations.

Rename

In order to rename a resource, click Rename in the pop-up menu.

Enter the new name.

Click OK to accept or
Click Cancel in order to cancel the operation.

Delete

In order to delete a resource, click Delete in the pop-up menu.

A message requests confirmation to delete the resource.

Click OK to delete or
Click Cancel in order to cancel the operation.

Quick Start

WPS v2.5X | 94

Print

Select the option that you wish to print.

Click OK in order to print or
Click Cancel in order to cancel the operation.

Properties

In order to view/edit the resource properties, click the Properties menu item in the pop-up menu.

The properties window shows some categories:

Communication Configuration;
Program Copy;
Equipment;
Information;
Memory Areas.

1) Communication Configuration

In Communication Configuration, you can change different communication variables:

Name of the host and port of the communication manager;
Device (Equipment);
Physical layer;
Port settings;
Times;
Communication test (current connection);
Communication status.

Quick Start

WPS v2.5X | 95

2) Program Copy

NOTE!
This option is available only for CFW300.

In Program Copy, a checkbox allows selecting the copy type of the user program from the memory card to the
equipment:

Allow copying: allows the ladder program to be copied to a flash memory module (CFW300-MMF);
Allow only one copy: allows the ladder program to be copied to a flash memory module (CFW300-MMF),
which allows loading it to another equipment; however, it does not allow copying from that equipment to
another flash memory module, that is, it does not allow copy of the copy;
Do not allow copying: does not allow the ladder program to be copied to a flash memory module (CFW300-
MMF);

Quick Start

WPS v2.5X | 96

3) Device

In Device, you can:

Change the firmware version;
Select/remove accessories;
Read the equipment identification, viewing the model and firmware version.

Quick Start

WPS v2.5X | 97

4) Information

In Information, you can view/change configuration data:

Author;
Client;
Description.

Quick Start

WPS v2.5X | 98

5) Memory Areas

In Memory Areas, it is possible to change the amount of memory (in bytes) allocated to each resource
section.

Allocated memory: the editable text boxes show information of allocated memory, enabling the user to
change them;
Used memory: the non-editable text boxes show information on the memory currently used by the resource
loaded on the equipment;
Limits: next to these boxes, it is displayed the range of acceptable values of allocated memory for each
field.

One click on the Allocated button shows a chart of allocated memory.

One click on the Used button shows a chart of used memory.

Quick Start

WPS v2.5X | 99

Communication

WPS v2.5X | 100

7 Communication

7.1 Equipment Parameterization

The following parameters must be set so as to establish the communication with the equipments:

Equipme

nt
Necessary Accessories

Connection

Type
Driver

Parame

ter
Description

Recommended or Factory

Setting

CFW300

CFW300 w ith CFW300-

CRS232 module
RS232 - - - -

0308 Serial Address 1

0310 Serial Baud Rate 1 = 19200 bits/s

0311
Serial Byte

Configuration
1 = 8 bits, even parity, 1 sb

0312 Serial Protocol 2 = Modbus RTU

CFW300 w ith CFW300-

CRS485 module
RS485

USB drive

supplied by

the

manufactur

er of the

Isolated

USB to 485

Converter

(external

device)

0308 Serial Address 1

0310 Serial Baud Rate 1 = 19200 bits/s

0311
Serial Byte

Configuration
1 = 8 bits, even parity, 1 sb

0312 Serial Protocol 2 = Modbus RTU

CFW300 w ith CFW300-

CUSB module

USB Serial

Port
FTDI

0308 Serial Address 1

0310 Serial Baud Rate 1 = 19200 bits/s

0311
Serial Byte

Configuration
1 = 8 bits, even parity, 1 sb

0312 Serial Protocol 2 = Modbus RTU

CVW500 - - - - RS232 - - - -

0308 Serial Address 1

0310 Serial Baud Rate 1 = 19200 bits/s

- - - -
Serial Byte

Configuration

8 data bits, even parity, 1 stop

bit

- - - - Serial Protocol Modbus RTU

SCA06 - - - - USB
WEG USB

Driver
- - - - - - - - - - - - - -

PLC300 - - - - USB
WEG USB

Driver
- - - - - - - - - - - - - -

SSW900 - - - - USB
WEG USB

Driver
- - - - - - - - - - - - - -

7.2 Establishing Communication - USB Serial Port

The USB serial port is known as Virtual Com Port.

The equipment must be closer than three meters to the computer.

This connection is done by means of USB Cable.

USB Driver: it is necessary to install the USB FTDI drive available in the folder USB_Driver\FTDI.

Communication

WPS v2.5X | 101

CFW300

1) Connection of the Computer to the Equipment

The figure below shows how to connect a computer to the equipment via USB.

Communication

WPS v2.5X | 102

2) Windows Device Manager

Communication

WPS v2.5X | 103

The Windows device manager indicates the serial port connected to the equipment.
The computer name on the device manager is illegible on purpose.

3) Communication Configuration on the WPS

On the WPS, select the serial port correctly in the window Property > Communication Configuration as
follows.

Communication

WPS v2.5X | 104

NOTE!
Turn off the equipment before making the connections.

4) Connecting the Equipment

1. Insert the mini-B connector of the USB cable into the USB connector of the equipment;
2. Insert the A-type connector of the USB cable into the computer USB port;
3. In the device manager, check which serial port is connected;
4. Make sure that the serial connection is selected in the Communication Configuration category of the

resource Property window;
5. The serial port and its resource configuration on the WPS must be the same serial port that appears in the

Windows device manager where the USB cable is connected;
6. Never change the values in parameters P308, P310, P311 and P312 during a connection. Changing those

parameters causes the immediate loss of communication between the PC and the equipment.

7.3 Establishing Communication - RS232

The equipment must be at a certain distance from the computer according to the table below.

Communication

WPS v2.5X | 105

Baud Rate

(bps)

Maximum Cable Size

(ft)

Maximum Cable Size

(m)

9600 32.81 10

19200 24.93 7.6

38400 12.14 3.7

CFW300

1) Connection of the Computer to the Equipment

The figure below shows how to connect a computer to the equipment via RS232.

Communication

WPS v2.5X | 106

2) Computer - Plug-In Module Connection

Communication

WPS v2.5X | 107

The figure below shows details of the connection.

3) Windows Device Manager

The Windows device manager indicates the serial port connected to the equipment.
The computer name on the device manager is illegible on purpose.

Communication

WPS v2.5X | 108

4) Communication Configuration on the WPS

On the WPS, select the serial port correctly in the window Property > Communication Configuration as
follows.

Communication

WPS v2.5X | 109

NOTE!
Turn off the equipment before making the connections.

5) Connecting the Equipment

1. Make the connections of the serial DB9 female connector of the RS232 cable to the CFW300-RS232
accessory as shown in the previous figures;

2. Insert the DB9 female connector of the RS232 cable into the DB9 male connector of the computer;
3. In the device manager, check which serial port is connected;
4. Make sure that the serial connection is selected in the Communication Configuration category of the

resource Property window;
5. The serial port and its configuration of the resource in the WPS must be the same serial port that appears

in the Windows device manager where the RS232 cable is connected;
6. Never change the values in parameters P308, P310, P311 and P312 during a connection. Changing those

parameters causes the immediate loss of communication between the PC and the equipment.

7.4 Establishing Communication - RS485

The equipment must be at a certain distance from the computer according to the table below.

Communication

WPS v2.5X | 110

Baud Rate

(bps)

Maximum Cable Size

(ft)

Maximum Cable Size

(m)

9600 3280.84 1000

19200 3280.84 1000

38400 3280.84 1000

The connection of the computer to the isolated USB to RS485 converter is done by means of the USB Cable.

In this case, it is necessary to install the USB driver of the isolated converter, normally supplied by the
manufacturer of the converter.

CFW300

1) Connection of the Computer to the Equipment

The figure below shows how to connect a computer to the equipment via RS485.

Communication

WPS v2.5X | 111

2) Computer - Plug-In Module Connection

The figure below shows an example using the Novus USB-i485 converter.

Communication

WPS v2.5X | 112

3) Windows Device Manager

The Windows device manager indicates the serial port connected to the device.
The computer name on the device manager is illegible on purpose.

Communication

WPS v2.5X | 113

4) Communication Configuration on the WPS

On the WPS, select the serial port correctly in the window Property > Communication Configuration as
follows.

Communication

WPS v2.5X | 114

NOTE!
Turn off the equipment before making the connections.

5) Connecting the Equipment

1. Make the connections from the connector of the isolated USB RS485 converter to the CFW300-RS485
accessory as shown in the previous figures;

2. Insert the USB cable into the connector of the isolated USB RS85 converter and into the computer USB
port;

3. In the device manager, check which serial port is connected;
4. Make sure that the serial connection is selected in the Communication Configuration category of the

resource Property window;
5. The serial port and its resource configuration on the WPS must be the same serial port that appears in the

Windows device manager where the USB cable is connected;
6. Never change the values in parameters P308, P310, P311 and P312 during a connection. Changing those

parameters causes the immediate loss of communication between the PC and the equipment.

7.5 Cables

The figure below details the cable for the point-to-point USB connection.

Communication

WPS v2.5X | 115

Figure 1: USB Cables

The figure below shows the connectors.

Figure 2: USB Connectors

A = Type A Connector
B = Type B Connector

Maximum cable size: 3 meters.

NOTE!
Always use a USB shielded interconnection cable, standard host/device shielded USB cable.
Unshielded cables may generate communication errors.

NOTE!
The USB connection is galvanically isolated from the power grid and other elevated voltages
internal to the drive. The USB connection, though, is not isolated from the protection earthing
(PE). Use an isolated laptop to connect to the USB connector, or a desktop connected to the
same protection earthing (PE) as the drive.

Purchasing Suggestions

Manufacturer:
Samtec, Inc: http://www.samtec.com

If you wish to purchase a USB cable directly from Samtec, please see below:

http://www.samtec.com

Communication

WPS v2.5X | 116

Description Item

High speed shielded USB cable Revision 2.0, 1 m, Samtec USBC-AM-MB-B-B-S-1

High speed shielded USB cable Revision 2.0, 2 m, Samtec USBC-AM-MB-B-B-S-2

High speed shielded USB cable Revision 2.0, 3 m, Samtec USBC-AM-MB-B-B-S-3

At the time this manual has been written, the specification could be found at
http://www.samtec.com/ftppub/cpdf/USBC-AM-BM-B-B-S-X-MKT.pdf

7.6 USB/Serial Converter

USB/Serial Converters are the best solution for those who wish to connect a serial equipment (RS232) to USB
ports. It is a low cost solution that solves the need to install new serial ports in microcomputers with all busy
busbars, or in an equipment (laptop) that does not have RS232 ports.

The USB/SERIAL converter allows a plug & play connection with your microcomputer, leaving the existing
serial port free.

Purchase Suggestions in Brazil

Manufacturer: Comm5 Tecnologia
Product: USB Converter for 1 saída serial RS232
Model: 1S-USB - USB converter for 1 serial
Web Site: http://www.comm5.com.br/1S-USB--CONVERSOR-USB-PARA-1-SERIAL
Refer to the user manual for more information about installation.

Manufacturer: Tripp Lite
Product: USB High Speed Serial Adapter
Model: USA-19HS
Web Site: http://www.tripplite.com/en/products/model.cfm?txtSeriesID=849&txtModelID=3914
Refer to the user manual for more information about installation.

http://www.samtec.com/ftppub/cpdf/USBC-AM-BM-B-B-S-X-MKT.pdf

Communication

WPS v2.5X | 117

Ladder

WPS v2.5X | 118

8 Ladder

8.1 Concepts

8.1.1 Introduction

Ladder Programming is the graphical representation of boolean equations combining contacts (input
arguments) with coils (output results).

Ladder programming enables testing and modifying data by standard graphical symbols. These symbols are
positioned in the Ladder diagram in a way that is similar to a line of a logic diagram with relays. The Ladder
diagram is delimited on the left and on the right by busbar lines.

Graphical Components

The basic graphical components of a Ladder diagram are shown below.

Figure 1: Ladder Working Flow

1. Left busbar
2. Right busbar
3. Horizontal connection
4. Vertical connection
5. Contact
6. Coil
7. Power flow

Busbars

The editor is delimited on the left by a vertical line known as left busbar, and on the right by a vertical line
known as right busbar.

Ladder

WPS v2.5X | 119

Connection Elements and States

The connection elements may be horizontal or vertical. The state of the connection elements may be denoted
by 1 or 0, corresponding to the literal Boolean value 1 or 0, respectively. The term connection state must be
synonymous with the term power flow.

The state of the left busbar may always be considered 1. No states are defined on the right busbar.

The horizontal connection element must be indicated by a horizontal line. A horizontal connection element
transmits the state of the element immediately on the left to the element immediately on the right.

The vertical connection element must consist of vertical lines intersected by one or more horizontal
connections on each side.

The state of the vertical connection must represent the logical OR of states 1 of horizontal connections on the
left side, i.e. the state of the vertical connections must be:

0 if the state of all horizontal connections included on its left is 0,
1 if the state of one or more horizontal connections included on its left is 1.

The state of the vertical connections must be copied to all associated horizontal connections on its right.

The state of vertical connections must not be copied to associated horizontal connections on its left.

Execution Control

The following figure shows how the program in Ladder is executed. The card continually runs a Scanning
cycle. The cycle begins when the I/O System in the hardware compiles the last values of all input signals and
records those values in fixed areas of the memory.

Figure 2: Execution Control

A - Inputs read to the memory
B - Memory written in the Outputs
C - Scanning of Ladder lines

The lines in the Ladder program are then run in a fixed order, starting with the first line. During program
scanning, new values for physical outputs, as determined by the logic of several Ladder lines, are initially
written to an area of the output memory. Finally, when the Ladder program has finished running, all output
values retained in the memory are inscribed in the physical outputs by the hardware in a single operation.

Ladder

WPS v2.5X | 120

8.1.2 Legend

AT: Direct representation of a variable.

FUNCTION BLOCK: It is a function that needs an instance.

CONFIGURATION: It is the organization of a software application in a higher level. It may contain Resources
within a Configuration.

FUNCTION: It is a block responsible for executing a certain behavior or an action based on possible
parameters (VAR_IN, VAR_IN_OUT, VAR_OUT).

INSTANCE: Memory area taken according to the Functional Block.

LD (Ladder Diagram): Graphical language based on the electric diagrams (interconnected contacts and
coils), according to the power flow between the elements.

OVERFLOW: It occurs when the result of a mathematical calculation exceeds the limits permitted for the
result data type.

POU: Program Organization Unit. It may be: Program, Functional Block or Function.

PROGRAM: It is the logical grouping of all programming elements and constructions necessary for processing
the signals required to control a machine or process.

RESOURCE: They consist of any element with processing capacity responsible for executing the programs.

SCAN: Scan cycle of a program.

STACK: Stack of the Ladder program. It is the memory area used to perform the Program Logics.

TAG: Variable Name.

TASK: Responsible for the execution of programs, in a periodical or triggered way, with trigger by event.

DATATYPE: It informs the compiler the space taken by a variable and its respective format (to the Blocks).

VARIABLE: It consists of a memory position able to withhold and represent a value or expression. It may have
scope:

Location: whose automatic position is calculated by the compiler.
Global: located in a determined memory area with digital inputs and outputs, it may be accessed at any
point of the Configuration.

The variable may be:
Retentive: it stores the value after powering down the device;
Volatile: it begins with the value contained in the initial value field after the powering down of the device;
Constant: it does not allow the modification of its content.

VAR: Variables for internal use of a User’s Block (USERFB). Equivalent to a variable of Local scope.

VAR_IN: Input argument of a User’s Block (USERFB). Variables configured in this field will be only read on the
USERFB.

Ladder

WPS v2.5X | 121

VAR_IN_OUT: Input and output argument of a User’s Block (USERFB). It will not allow CONSTANT variables,
PHYSICAL INPUTS (%I_), NETWORK INPUTS (%I_) or READING SYSTEM MARKERS (%S_), because they
will be read at the beginning of the USERFB and will be updated with new values (written) at the end of the
USERFB.

VAR_OUT: Output argument of a User’s Block (USERFB). It will not allow CONSTANT variables, PHYSICAL
INPUTS (%I_), NETWORK INPUTS (%I_) or READING SYSTEM MARKERS (%S_), because they will be
updated with new values (written) at the end of the USERFB.

WATCHDOG: It is a way provided by the manufacturer to perform specific actions if the integrity of the system
is violated.

8.1.3 Contact Logic

AND LOGIC – Contact in Series

Figure 1: Contacts in Series

The figure above performs an AND Logic between the two last elements charged on the STACK, lowers a level
of the STACK, and places the result on top of the STACK. That means that the following Boolean operation is
performed: top of the STACK = BIT1.BIT2.

In IL (Instruction List) language it becomes like this:
LD BIT1 (* loads the value of variable BIT1 to the STACK *)
LD BIT2 (* loads the value of variable BIT2 to the STACK *)
AND (* Performs AND Logic between BIT1 and BIT2 through the STACK *)

Truth Table

BIT1 BIT2 STACK

0 0 0

0 1 0

1 0 0

1 1 1

Ladder

WPS v2.5X | 122

OR LOGIC – Contact in Parallel

Figure 2: Contacts

in Parallel

The figure above performs an OR Logic between the two last elements charged on the STACK, lowers a level
of the STACK, and places the result on top of the STACK. That means that the following Boolean operation is
performed: top of the STACK = BIT1 + BIT2.

In IL (Instruction List) language it becomes like this:
LD BIT1 (* loads the value of variable BIT1 to the STACK *)
LD BIT2 (* loads the value of variable BIT2 to the STACK *)
OR (* Performs OR logic between BIT1 and BIT2 through the STACK *)

Truth Table

BIT1 BIT2 STACK

0 0 0

0 1 1

1 0 1

1 1 1

Ladder

WPS v2.5X | 123

8.1.4 Data types

Data type Size Signal Range

BOOL 1 bit 0 or 1

BYTE 8 bits (1 byte) 0 to 255

USINT 8 bits (1 byte) 0 to 255

SINT 8 bits (1 byte) Yes -128 to 127

WORD 16 bits (2 bytes) 0 to 65535

UINT 16 bits (2 bytes) 0 to 65535

INT 16 bits (2 bytes) Yes -32768 to 32767

DWORD 32 bits (4 bytes) 0 to (232 - 1)

UDINT 32 bits (4 bytes) 0 to (232 - 1)

DINT 32 bits (4 bytes) Yes - 231 to (231 - 1)

LWORD 64 bits (8 bytes) 0 to (264 - 1)

ULINT 64 bits (8 bytes) 0 to (264 - 1)

LINT 64 bits (8 bytes) Yes - 263 to (263 - 1)

REAL
32 bits (4 bytes)

Floating point - IEEE 559 standard
Yes ±10±38; Precision = 2-23

LREAL
64 bits (8 bytes)

Floating point - IEEE 559 standard
Yes ±10±308; Precision = 2-52

STRING
8 bits (1 byte) for each position

+ 8 bits (1 byte) for the null character
1 to 254 ASCII characters

NOTE!
The data type STRING considers only the number of characters in the size of the variable. The
byte occupied by the null terminator is not added to the size.

8.1.5 Direct Representation

Used to define the memory position of a Global Variable.

Syntax: %<Format><Size>

First Letter:

At (Format) Description

I
Input: It receives the values from analog and

discrete variables, or input netw ork variables.

Q

Output: It stores the values to be w ritten in the

analog and discrete outputs, or output netw ork

variables.

M RAM memory internal marker.

S System status marker

C System command marker

Ladder

WPS v2.5X | 124

Second Letter:

At (Format) Description

X Bit

B Byte (8 bits)

W Word (16 bits)

D Double Word (32 bits)

L Long Word (64 bits)

8.2 Editor

8.2.1 Desktop

Whenever a Ladder file is opened through its shortcut in the project tree, the variable/Ladder editor will show
as per the figure below.

Figure 1: WPS Ladder Editor Desktop

The variable/Ladder editor has the following components:

1. Toolbar to edit variables
2. Variable scope
3. Variable group
4. Variable list/editor
5. Program edition toolbar
6. Editor Ladder/rungs
7. Ladder component palette

Ladder

WPS v2.5X | 125

NOTE!
If any docker is not visible, activate through the Palette item in Window menu.

8.2.2 Ladder Menu

When editing a Ladder file of your resource, the Ladder menu will be active as per the figure below.

Through this menu, it is possible to execute all the operations regarding the Ladder as well as to know the
keyboard shortcuts for those operations.

Ladder

WPS v2.5X | 126

8.2.3 Rungs

8.2.3.1 Overview

The Ladder program is edited through a graphical editor that organizes it through the rungs. Every rung in the
Ladder program corresponds to an interlock that relates input elements to output elements. Said editor is
shown in the following figure.

Figure 1: Rung Elements

The main elements of a rung are:
1. Left busbar
2. Right busbar
3. Output busbar
4. Connection between the elements
5. Rung title and comment

NOTE!
Outputs will always be connected to the right of the output busbar.

For further details on Ladder programming click here.

Through the Ladder/rungs editor tool bar, it is possible to perform the following operations:

Ladder

WPS v2.5X | 127

- Add a new rung (end)

- Add a new rung (above)

- Add a new rung (below)

- Move rung up

- Move rung down

- Remove the selected rung

- Insert a contact in the rung

- Insert a functional block in the rung

- Insert an output coil in the rung

- Change Ladder element

- Delete an element in the rung (contact, functional block, or coil)

- Edit rung title

- Edit arguments

- Select element group

- Select all elements

- Select the rung for edition

8.2.3.2 Editing

In order to edit a rung, the rung must be selected. In order to select the rung, you may click on it with the
mouse or use the rung selection control in the Ladder Editor toolbar. Whenever the rung is selected, there
will be a grey bar on the left side of the rung as shown in the following figure.

8.2.3.3 Title and Comment

In order to edit the rung title and comment, just double click on the title and comment area with the mouse or
press the Shift+F2 keys. The following dialog will appear.

Ladder

WPS v2.5X | 128

Figure 1: Editing the Rung Title

After editing the title and comment, the editor will become as follows.

Figure 2: Rung with its Title

8.2.3.4 Inserting Elements

8.2.3.4.1 Overview

In order to insert an element in the rung, it is necessary that an already existing element is selected, as
shown in the following figure.

The selected element will be involved by a green, striped rectangle. There will also be a red dot indicating
where the new element will be inserted (insertion point).

The insertion of Ladder elements may be performed in three distinct ways.

1. With the keyboard through the following shortcuts

key: C - insert contact
key: F - insert functional block
key: O - insert output coil
key: X - change ladder element

2. With the Ladder/rungs editor tool bar

 - Insert a contact in the rung

Ladder

WPS v2.5X | 129

 - Insert a functional block in the rung

 - Insert an output coil in the rung

 - Change ladder element

3. With the palette of Ladder elements

A mouse drag and drop operation must be used in order to insert elements using the palette. For that purpose,
click on the palette element, keep the mouse pressed, move the mouse up to the insertion point in the Ladder,
and release the mouse button.

After inserting an element, e.g. a contact, the rung will become as follows.

8.2.3.4.2 In Series

Through the insertion point of elements, it is possible to insert an element in series. For that purpose, use the
following insertion points:

Figure 1 - Inserts an

element in series

before the selected

element

Ladder

WPS v2.5X | 130

Figure 2 - Inserts an

element in series

after the selected

element

8.2.3.4.3 In Parallel

Through the insertion point of elements, it is possible to insert an element in parallel. For that purpose, use the
following insertion points:

Figure 1 - Inserts an

element in parallel

above the selected

element

Figure 2 - Inserts an

element in parallel

under the selected

element

8.2.3.5 Browsing

8.2.3.5.1 With the Keyboard

Browsing with the keyboard in the rung is done by the keys , , , . Through these keys, it is possible to
select several elements inside the rung, and also define the insertion point of new elements.

As shown in the item previous to insert an element of the contact type in the rung, it will become as follows.

By pressing the browsing keys, we can modify the insertion point of a new element, as shown in the following
figures:

Key indicates that the new element will be inserted before the selected element

Key indicates that the new element will be inserted parallelly above the selected element

Ladder

WPS v2.5X | 131

Key indicates that the new element will be inserted parallelly below the selected element

Key indicates that the new element will be inserted after the selected element

As the insertion point has already been selected, and by pressing the same key as the corresponding
direction, the selection will move on to the next element, as shown in the following figure.

When inserting elements to the browser in parallel through the elements, we browse through each element
individually, conforming to the following example.

In this situation, when inserting an element, we are making this insertion related to this element. Should it be
necessary to insert an element related to the parallel that is a group of elements, we must use the G key,
which will select the group, and then we can define the insertion point, and make the insertion as shown in the
following figures.

Pressing G:

Inserting contact before the parallel:

Every time the G key is pressed, we select the group immediately above the selected element/group, and in
the end, we go back to the original element, so, in some situations, it is necessary to touch the G key more
than once. Through the G key it is possible to make many insertion operations conforming to the following
examples.

Ladder

WPS v2.5X | 132

Insert an element in parallel to the group of elements in the rung

Insert an element in series to the group formed by elements that are internal to a parallel

8.2.3.5.2 With the Mouse

All browsing functionalities with the keyboard in the rung are also available in the mouse. It is possible to
select an element and the respective insertion point directly with the click of the mouse.

Cursor Action Representation

Selects element and upper insertion point

Selects element and low er insertion point

Selects element and anterior insertion point

Selects element and posterior insertion point

During the element insertion operation with the mouse, by dragging and releasing the mouse in the palette, as
we drag the elements over the rung, the selection and the insertion point follow the mouse cursor so as to
determine the insertion point. The following figure exemplifies the insertion of elements via mouse.

Ladder

WPS v2.5X | 133

Figure 1: Operation of dragging component with the Mouse

Element insertion sequence via mouse:
1. Select the palette element you wish to insert by clicking on it with the mouse, and keeping the mouse

button pressed
2. Drag this element over the rung
3. Select the insertion point and release the mouse button on it

The insertion result in this example will be as follows.

Figure 2: Result after the dragging operation

During the insertion via mouse, it is also possible to select the group of elements. For that purpose, as the
previously selected element is dragged, press the Ctrl function key and keep it pressed; while the Ctrl key is
being pressed, the mouse will select insertion points related to groups.

8.2.3.6 Copy/Paste

Overview

All the copy, cut and paste functions are available in the Ladder editor through the edit menu or through the
corresponding keyboard shortcuts. In order to execute these operations it is necessary to have rung and/or
element selected.

Copy/paste an element

Below is an example of copying and pasting an element.

Figure 1: First, select the element and press Ctrl+C

Ladder

WPS v2.5X | 134

Figure 2: Then, select contact with insertion point after

and press Ctrl+V

Copy/paste multiple elements

It is also possible to copy, cut and paste multiple elements selected either by the mouse or by the G key as
previously mentioned. Below is an example of copying and pasting multiple elements.

Figure 3: First, select the group and press Ctrl+C

Figure 4: Then, select timer with insertion point before and press Ctrl+V

There might be cases in which it is not possible to paste and there will not be modification in the rung after the
command.

Copy/paste rungs

The selection of rungs for the operations of copy, cut and paste is only performed through the mouse as
shown in the figures below.

Ladder

WPS v2.5X | 135

Figure 5: Through the mouse from the right side out of the rung

Figure 6: Through the mouse from the left side out of the rung

It is also possible to select multiple rungs for these operations.

Below is an example of copying / pasting a rung.

Figure 8: Rung to be copied has been selected, then pressed Ctrl+C

Ladder

WPS v2.5X | 136

Figure 9: Rung above destination has been selected

Figure 10: After pressing Ctrl+V

Ladder

WPS v2.5X | 137

8.2.4 Variables

8.2.4.1 Overview

During the Ladder edition, it is necessary to define the variables used in the Ladder components. This
definition can be done directly in the Ladder and/or in the editor/list of variables.

The table of variables must be activated through the menu Window > Variables as shown in the following
figure.

In the variable edition window, the following commands are available:

 - Add a new variable

 - Edit the selected variable

 - Remove the selected variable

 - Move the selected variable one row up in the table

 - Move the selected variable one row down in the table

 - Rename the selected variable

 - Export variables from this group to a file

 - Import variables to this group from a file

The variables of the GLOBAL scope (1) present the groups (2) as shown in figure 1.

Figure 1: Variable Editor for the "GLOBAL" Scope

In this area of the global variables, the following groups are available:

Constant: variables that store constant values
Global: variables accessible by all the Ladder files
Global Retentive: similar to the global group, but with retentive memory

Ladder

WPS v2.5X | 138

System Global: variables previously defined with system functions
Global Parameter: variables from device accessible by Ladder and HMI
I/O Global: physical inputs and outputs of the equipment
Network Global: Variables previously defined for network communication

The variables of the LOCAL scope (1) present the groups (2) as per figure 2.

Figure 2: Variable Editor for the "LOCAL" Scope

In this area of local variables, the following groups are available:

Location: variables only accessible through the Ladder that is being edited
Local Retentive: similar to the local group, but with retentive memory

NOTE!
A retentive memory keeps its value even with the equipment off.

8.2.4.2 Fields

When defining a variable through the variable editor/list, some data must be defined for the variables. In the
following items, those data will be presented according to the group the variable belongs to.

Local and Local Retentive:

Tag: variable identification
Size: number of elements of the array* related to the variable
Data Type: variable numeric type
Initial Value: value that will be loaded for variable during the initialization of the equipment
Comment: comment of the variable in the selected language

Constant:

Ladder

WPS v2.5X | 139

Tag: variable identification
Data Type: variable numeric type
Value: constant value of the variable
Comment: comment of the variable in the selected language

Global and Global Retentive:

Tag: variable identification
Size: number of elements of the array* related to the variable
Data Type: variable numeric type
At: defines which global memory area the variable accesses
Address: address related to the global memory area. If not configured (empty), the compiler will
automatically define its address.
Bit: for Boolean data type, it is necessary to define the bit it accesses (0...7)
Initial Value: value that will be loaded for variable during the initialization of the equipment
Comment: comment of the variable in the selected language
Modbus: modbus address

System:

Tag: variable identification
Data Type: variable numeric type
At: defines which global memory area the variable accesses
Address: address related to the global memory area.
Bit: for Boolean data type, it is necessary to define the bit it accesses (0...7)
Comment: comment of the variable in the selected language
Modbus: modbus address

Global Parameter:

Tag: variable identification
Data Type: variable numeric type
At: defines which global memory area the variable accesses
Address: address related to the global memory area.
Initial Value: initial standard value
Comment: comment of the variable in the selected language
Modbus: modbus address

Ladder

WPS v2.5X | 140

I/O:

Tag: variable identification
Size: number of elements of the array* related to the variable
Data Type: variable numeric type
At: defines which global memory area the variable accesses
Address: address related to the global memory area.
Bit: for Boolean data type, it is necessary to define the bit it accesses (0...7)
Comment: comment of the variable in the selected language
Modbus: modbus address

NOTE!
When size is greater than zero, the variables are accessed in the Ladder through their array
index.

8.2.4.3 Editing in the Rung

The Ladder elements inserted in the rung require that variables be defined for each argument. See figure below.

Figure 1: Variables without declaration in the elements and blocks

In order to define a variable for the argument, it is necessary to enter the argument edition mode, which is
done in two ways.

ATTENTION!
As from the version 1.30 of the WPS the output arguments of the functional blocks can be
optional.
The arguments in question will not be initialized with the declaration ??? and may be omitted if
they do not have to be used in the Ladder logic.

1. By the mouse:
Double clicking the mouse directly on the argument

2. By the keyboard:
Pressing the F2 key.
For elements with one argument, it directly enters the argument edition mode.
In the other elements with more than one element, it is necessary to select the argument through the arrow
keys and then press the F2 key again.

When entering the edition mode, the element will appear similar to the following figure.

Ladder

WPS v2.5X | 141

Figure 2: Attributing the variables

At this moment, an edition box will be enabled for you to enter the variable name. When the Edit button is
pressed, a box to create the new variable will be enabled.

Figure 3: Creating the variable if its tag is not defined

In this box you should define the following options for the variable:

Scope: if it belongs to the Global or Local group
Tag: variable identification
Size: number of elements of the array* related to the variable
Data Type: variable numeric type
Group: Group to which the variable belongs

If there are already variables defined for the type compatible with the Ladder element, a selection box with
these variables will show together with the edition box. In order to select the desired variable, press the down
arrow key and after having the variable selected, press enter. The figure below shows this function.

Ladder

WPS v2.5X | 142

Figure 4: Selecting variables when

typing

8.2.4.4 Literals in the Rung

In the functional blocks, it is also possible to enter literal values as shown in the figure that follows.

Figure 1: Example of Program

In this example, the PT input of the TON block was configured with the value 1000, which is a literal.

In order to enter literals, the following conventions must be used:

Whole number has no decimal point.
o E.g.: 12, 1000, 1555

Real numbers with floating point must necessarily have point.
o E.g.: 1.5, 2.25, 3.0

Numbers represented in hexadecimal must necessarily define the data type.
o E.g.: BYTE#16#7F, WORD#16#3CF0, DWORD#16#00FF0088

Numbers represented in binary must necessarily define the data type.
o E.g.: BYTE#2#1010_0000, WORD#2#0111_0000_0000_0001

ATTENTION!
In some blocks, for data verification and consistency reasons, it will be necessary to define the data
type of the literal through specific notation that will contain the following options: BOOL#, BYTE#,
INT#, UINT#, DINT#, UDINT#, WORD#, DWORD# and REAL#. Example: WORD#17321

8.2.4.5 Arrays in the Rung

In the contacts, coils and functional blocks, it is also possible the access of variables of the array type as
shown in the following figures.

Ladder

WPS v2.5X | 143

Figure 1: Array access

Figure 2: Array in the Rung

In order to view the indices of a variable of the array type, expand the variable in the variable window as shown
in the following figure.

Figure 3: Displaying indices of a variable of the array type

8.2.4.6 Instances and Structures in the Rung

In the contacts, coils and functional blocks, it is also possible to access the internal variables of instances
and structures as shown in the following figures.

Ladder

WPS v2.5X | 144

Figure 1: Access of internal variable of instance or structure

Figure 2: Internal variable of instance or structure in the Rung

In order to view the internal variables of the instances and structures, expand the variable in the variable
window as shown in the following figure.

Figure 3: Displaying internal variables of instance or structure

8.2.4.7 Volatile and Retentive Instances

Function Blocks (FBs)

The FBs have internal variables that store their data during the consecutive execution cycles. According to the
application requirement, these FBs may have their instances configured as retentive (LOCAL_RETAIN or
GLOBAL_RETAIN) or volatile (LOCAL_RETAIN or GLOBAL_RETAIN). The input and output variable
associated to the FB can also be configured as retentive or volatile. The retentive variables retain their values

Ladder

WPS v2.5X | 145

after the device is shut down, whereas the volatile variables load their initial values after a reset.

When we want the FB to keep the values after the reset of the device, it is necessary that the FB instances
and the variables associated to its inputs be configured as retentive. That will make the FB internal variables
and the associated input variables keep the values previous to shutdown.
In the example below, we have the use of the TON block with retentive instances and variables:

Figure 1: TP block with retentive instance and variables before reset.

Ladder

WPS v2.5X | 146

Figure 2: TP block with retentive instance and variables one second after the setup.

When we want the FB to reset its values after the shutdown of the device, it is necessary that the FB instance
and the variables associated to its inputs be configured as volatile. That will make the FB internal variables and
the associated input variables reset the values previous to shutdown.
Below is an example of use of the CTU block with retentive instance and variables:

Ladder

WPS v2.5X | 147

Figure 3: CTU block with volatile instance and variables before reset.

Ladder

WPS v2.5X | 148

Figure 4: CTU block with volatile instance and variables after reset.

User’s Block (USERFB)

In the use of the USERFB, it is possible to define variables of LOCAL, LOCAL_RETAIN, VAR_IN, VAR_OUT
and VAR_IN_OUT type. The internal variables defined as LOCAL will always be volatile, and the
LOCAL_RETAIN ones will always be retentive. The internal variable defined as VAR_IN, VAR_OUT and
VAR_IN_OUT will be volatile in case the instance of the USERFB is associated to the LOCAL or GLOBAL
group and retentive in case it is associated to the LOCAL_RETAIN or GLOBAL_RETAIN group.

8.2.5 Compile

In order to compile a Program (POU), there are four options:

1. Through the menu Configuration > Build Main Resource.

Ladder

WPS v2.5X | 149

Figure 1: Compile from the Menu

2. Through the shortcut key F4.

3. Through the button on the Toolbar.

Figure 2: Compile

from the Toolbar

4. Clicking the right button of the mouse on the name of the resource.

Figure 3: Right button of the mouse on the resource

The results of the compilation, indicating errors and warnings, can be viewed through the Default Output
window.

Figure 4: Results of the compilation

8.2.6 Transfer

In order to download a resource, there are four options:

Ladder

WPS v2.5X | 150

1. Through the menu Communication > Download Main Resource.

Figure 1: Download from the Menu

2. Through the shortcut key F5.

3. Through the button on the Toolbar.

Figure 2: Download

from the Toolbar

4. Clicking the right button of the mouse on the name of the resource.

8.2.7 Online Monitoring

Overview

After the Ladder program is compiled and loaded on the device, it is possible to monitor the Ladder by

pressing the Connect Device button .
At this moment, the WPS v2.5X will try to establish communication with the device by testing the
communication with it.

The online monitoring will graphically represent the logical state of the Ladder program. An example of online
monitoring can be seen in the following figure.

Ladder

WPS v2.5X | 151

Figure 1: Example of online monitoring

For functional blocks, the values are presented as shown in the following figure:

Figure 2: Monitoring values of the functional blocks

The variables values are shown on their respective variables; the internal values of the instance are shown on
the name of the respective argument.

Writing of variables

In order to write variables, just double click the variable you wish to write and a value writing box will open as
shown in the following figure.

Figure 3: Writing of variables

In this box, you must enter the desired value and press the Write button in order to write the value. The
Toggle button is used to toggle the value written between zero and the current value.

Monitoring of instances

In order to monitor, just double click the instance variable and a box related to instance monitoring will open as
shown in the following figure.

Ladder

WPS v2.5X | 152

Figure 4: Monitoring of instances

In order to write on instance internal variables, just click on the corresponding line, use the value edition box
and the Write and Toggle buttons as already mentioned in the previous item.

Monitoring of structures

For the variables created from structures defined in the resource, just click on the corresponding variable and a
box similar to the instance monitoring one will open. See the following example.

Figure 5: Structure defined in the resource

Ladder

WPS v2.5X | 153

Figure 6: Variable created with data type of the structure

defined in the resource

Figure 7: Monitoring of the variable used in the SDCARD_ReadRecipe block

Monitoring of arrays

For variables created with size greater than zero, it is possible to monitor all the data of their array. In order to
do so, just click on the corresponding variable and a monitoring box will open. See the following example.

Ladder

WPS v2.5X | 154

Figure 8: Variable created with size greater than zero, array

Figure 9: Monitoring of the variable used in MB_ReadRegister block

8.3 Working with USERFBs

8.3.1 Creating USERFBs

USERFBs are cuser-customizable functional blocks. Its utilization is encouraged to make the Ladder program
less bulky and polluted, abstracting information with which one does not want to work often and systematizing
complex tasks.

In these blocks, the inputs and outputs are defined by the user, who handles them in the Ladder diagram
associated with the block. Here's how to create your USERFB.

1. In the Projects window, locate the resource in which you want to create the USERFB, right-click in User

Ladder

WPS v2.5X | 155

Function Block and click in New Folder.

2. In the wizard, insert a name for the library to which the USERFB will belong and click Next.

3. Insert a valid name for the USERFB and click Next.

4. If you want to insert a password to protect the block code, check the Encrypt binary checkbox and type a
password. Otherwise, uncheck it. Click Finish.

Ladder

WPS v2.5X | 156

That's it! The USERFB has been succesfully created. You should see the following in the Projects window.

8.3.2 Adding input/output

Now we'll cover how to create inputs and outputs for the USERFB.

1. In the Projects window, double click the USERFB file in order to open its Ladder editor.

Ladder

WPS v2.5X | 157

2. In the Window menu, click Variables.

Analysing the following figure, we see that the USERFB Variables window is different from other Ladder files.
It has only volatile and retain variables in LOCAL scope, which are the internal variables of the block, used in
its subroutine. Besides these, it has three more groups: VAR_IN, VAR_OUT and VAR_IN_OUT.

VAR_IN: internal variables that repersent the input arguments for that block.
VAR_OUT: internal variables that repersent the output arguments for that block.
VAR_IN_OUT: internal variables that repersent the input/output arguments for that block.

3. In order to create an input, click in the VAR_IN tab and click in the symbol. In the window, set a name
and a datatype to this variable and click OK.

Ladder

WPS v2.5X | 158

4. In order to create an output, click in the VAR_OUT tab and click in the symbol. In the window, set a
name and a datatype to this variable and click OK.

5. In order to create an input/output, click in the VAR_IN_OUT tab and click in the symbol. In the window,
set a name and a datatype to this variable and click OK.

Ladder

WPS v2.5X | 159

8.3.3 Editing the Ladder

Now we'll cover how to edit the USERFB subroutine.

1. In the Projects window, double click the USERFB file in order to open its Ladder editor.

The Ladder Editor will open, like any other Ladder diagram. Any block may be inserted in it, including other
USERFBs. Remember that only local variables may be used in it.

Ladder

WPS v2.5X | 160

8.3.4 Using USERFBs

Lastly we'll cover how to make use of the USERFB, inserting it in other Ladder diagrams.

1. In the Projects window, double click the USERFB file in order to open its Ladder editor.

2. In the Pallete window, select the USERFB block from the Module category and drag it to the position
where you want to use it in the Ladder diagram.

3. Double click the question marks (???) above the block in order to insert a instance variable for the
USERFB. Type in the variable name and click Edit. In the confirmation dialog, click Yes to create the new
variable.

Ladder

WPS v2.5X | 161

4. In the Add dialog, type in a name for the variable and select its parameters. In the Datatype field, choose
the name of the desired USERFB (if there is only one, the field will not be enabled).
For example, if your USERFB name is MYUSERFB, the correct datatype to be selected is
$USERFB_MYUSERFB.

That's it! Your very own USERFB is inserted in the diagram and ready to work!

Diagnostic

WPS v2.5X | 162

9 Diagnostic

9.1 Monitoring Variable

Monitoring Variable allows creating sets of variables for monitoring in a Resource.

To do this, right-click on Variable Monitoring and select New File, following the on-screen instructions for
creating a new file.

After creating the file, use the button to add a variable.

Select the desired variable and click OK to confirm adding:

Diagnostic

WPS v2.5X | 163

9.2 Trend

9.2.1 Overview

Trend is a graph of the values of variables versus time.

The Trend function has ten monitoring channels, which means it is possible to monitor up to ten variables
and/or parameters at the same time.

Below is an overview of the trend function configuration screen.

Diagnostic

WPS v2.5X | 164

1. Channels, Start, Stop and Graphic Zoom: This bar contains the options to add, edit and remove
channels, and also the options to control the chart, such as zoom in, zoom out, set width, set height and
set all. There are buttons to start or stop data acquisition.

2. Time: This bar contains the options to configure the sampling periods and time range to be shown on the
graphic.

3. Chart: This screen shows graphically the monitored values of the channels. In the lower part is the time of
collection, and on the left is the range of values per unit of measurement of the channels.

4. Channel Table: This table shows the data of the chosen channels in the position where the cursor is,
besides the possibility to hide channels (Visible), change the channel color (Color) and set the chart limits
per unit of measurement (Maximum).

9.2.2 Configuration

Below is a list of the necessary steps to create a trend configuration.

1. Creation of a new trend file.

Diagnostic

WPS v2.5X | 165

2. Addition and configuration of the channels on the button on the upper left corner.

3. After adding the channel, just click on Connect Device and the trend will start automatically.

Diagnostic

WPS v2.5X | 166

Wizards

WPS v2.5X | 167

10 Wizards

10.1 Overview

Wizards allow the user to configure and monitor variables of the configured equipment in the resource through
predefined windows.

Below is an overview of the Wizards in WPS v2.5X.

1. Toolbar: displays the main commands of the software and contains the Connect Device button
required for writing and reading the equipment variables;

2. Configurations Window: displays the configurations, where each configuration contains resources, and
the resource contains the monitoring and configuration wizards;

3. Wizard Title: displays the title of the open wizard;

4. Wizard Toolbar: displays the commands for upload and monitoring , writing and printing
values of a configured wizard variables (Configuration Wizards only);

5. Equipment Status: displays the status of the connected equipment (Configuration Wizards only);
6. Message from an Equipment Status: displays the message of an alarm, failure or configuration status of

the connected equipment (Configuration Wizards only);
7. Equipment Variable Area: displays the writing and reading variables of the configured equipment and can

contain tabs for better division of the equipment's features.

10.2 Monitoring Wizard

A Monitoring Wizard basically allows the user to read the equipment variables that WPS v2.5X is connected

Wizards

WPS v2.5X | 168

to.

The Wizards folder in the Configurations Window contains the list of wizards implemented for the

equipment being a Monitoring Wizard identified by the icon .

When opening a Monitoring Wizard with communication with the equipment not established, a window will
be presented to the user as below.

To start monitoring the window variables, press the Connect Device button so that the communication
with the device is established.

Wizards

WPS v2.5X | 169

If the communication with the equipment is established the window background will change from light gray to
dark gray. When closing the window no questioning will be done to the user.

10.3 Configuration Wizard

A Configuration Wizard basically allows the user to configure the equipment's writing variables with WPS
v2.5X connected (online) or not connected (offline) to the device.

The Wizards folder in the Configurations Window contains the list of wizards implemented for the

equipment being a Configuration Wizard identified by the icon .

You can save the programmed values in a Configuration Wizard thus generating a new wizard file identified

by the icon .

When opening a Configuration Wizard with communication with the equipment not established, a window
will be presented to the user as below.

Wizards

WPS v2.5X | 170

The configuration with the equipment not connected (offline) is done with the Upload and Monitor Values

button not active.

When the configuration is finished, the user can save the values of the wizard by closing the wizard and
confirming the saving of the values.

A new wizard file with a generic name will then be saved, where the user can then manipulate this new file
according to the options shown by right-clicking the file as shown below.

Wizards

WPS v2.5X | 171

You can also create a new file based on the equipment wizard by right-clicking the wizard as shown below.

To print all the values of the Configuration Wizard you need to press the Print Values button in the
Wizard Toolbar. A print file will be generated in the format shown below.

Wizards

WPS v2.5X | 172

To send all the values of the Configuration Wizard to the equipment it is necessary to press the Connect

Device button so that the communication with the equipment is established and then press the Write

Values button in the Wizard Toolbar.

Wizards

WPS v2.5X | 173

To start a Configuration Wizard with the connected equipment (online) it is necessary to press the Monitor

Values button so that the monitoring of the equipment variables is activated in the wizard. At this point
the wizard variables are updated with the values that are on the connected equipment.

Wizards

WPS v2.5X | 174

If the communication with the equipment is established the window background will change from light gray to
dark gray. When closing the window will ask a question related to saving the values of the wizard.

Equipments (Devices)

WPS v2.5X | 175

11 Equipments (Devices)

11.1 CFW100

11.1.1 Description

The CFW100 frequency inverter is a high-performance product which allows speed control of three-phase
induction motors. This product provides the user with the options of vector (VVW) or scalar (V/f) control, both
programmable according to the application.

The scalar mode (V/f) is recommended for simpler applications, such as the activation of most pumps and
fans. In such cases it is possible to reduce the losses in the motor and the inverter using the "V/f Quadratic",
which results in energy savings. The V/f mode is used when more than a motor is activated by an inverter
simultaneously (multimotor applications). In the vector mode (VVW), the operation is optimized for the motor
in use, obtaining a better performance in terms of speed regulation.

The frequency inverter CFW100 also has functions of PLC (Programmable Logic Controller) by means of the
SoftPLC (integrated) feature. It has a slot for connection of the accessories for input and output (I/Os)
expansion, communication networks or remote HMI.

Refer to the user's manual of the CFW100 for further details about the product.

NOTE!

CFW100 versions below V3.00 do not have the Ladder tool available in WPS.
You can use the WLP application if this feature is required.

11.1.2 System Markers

The following variables contained in the GLOBAL_SYSTEM group of the variables table, have the fixed tag.
The tag of system markers were divided into groups and subgroups, where:

Groups:
CFW: reading and writing variables of the CFW100 frequency inverter.

Subgroups:
STS: reading variable (status);
CMD: writing variable (command).

Reading System Markers (Status)

Reading - Function Modbus 02 "Read Discrete Inputs"

Address Bit Modbus Tag Description

Ladder

%SB6000 0 0 SYS_FREQ_2HZ Oscillator w ith frequency of 2 Hz

Equipments (Devices)

WPS v2.5X | 176

%SB6000 1 1 SYS_PULSE_1SCAN Pulse during the f irst scan cycle

%SB6000 2 2 SYS_FALSE Alw ays in 0

%SB6000 3 3 SYS_TRUE Alw ays in 1

Logical Status

%SB6002 1 17 CFW_STS_RUN_COMMAND
The run motor command is active in the

inverter

%SB6002 2 18 CFW_STS_FIRE_MODE_ACTIVE Fire Mode Function is active

%SB6002 5 21 CFW_STS_SEC_RAMP_ACTIVE
The inverter is configured to use the f irst

or second ramp values (0-First, 1-

Second)

%SB6002 6 22 CFW_STS_CONFIG_MODE The inverter is in the configuration mode

%SB6002 7 23 CFW_STS_ALARM_ACTIVE The inverter is in alarm condition

%SB6003 0 24 CFW_STS_MOTOR_RUNNING
The inverter is running the motor at the

speed reference, or executing either the

acceleration or the deceleration ramp

%SB6003 1 25 CFW_STS_GENERAL_ENABLED
General Enable is active and the inverter

is ready to run the motor

%SB6003 2 26 CFW_STS_FWD_REV_DIRECTION
The motor is running in the reverse or

forw ard direction (0-Reverse, 1-

Forw ard)

%SB6003 3 27 CFW_STS_JOG_ACTIVE The JOG function is active

%SB6003 4 28 CFW_STS_LOC_REM_MODE
The inverter is in local or remote mode (0-

Local, 1-Remote)

%SB6003 5 29 CFW_STS_UNDERVOLTAGE The inverter is in undervoltage

%SB6003 7 31 CFW_STS_FAULT_ACTIVE The inverter has detected a fault

%SB6004 0 32 CFW_STS_AI1_BROKEN_CABLE
It indicates that the signal of analog input

AI1 in 4 to 20 mA or 20 to 4 mA is below

2 mA

HMI keys

%SB6006 0 48 CFW_STS_KEY_START_STOP START/STOP key (I)/(0) pressed

%SB6006 2 50 CFW_STS_KEY_UP UP key pressed

%SB6006 3 51 CFW_STS_KEY_DOWN DOWN key pressed

Infrared Remote Control (IRC 1)

%SB6010 0 80 CFW_STS_IRC_1_KEY_ON Start/Stop Motor key pressed

%SB6010 1 81 CFW_STS_IRC_1_KEY_DOWN Brow se Dow nw ards key pressed

%SB6010 2 82 CFW_STS_IRC_1_KEY_UP Brow se Upw ards key pressed

%SB6010 3 83 CFW_STS_IRC_1_KEY_CHANGE

Commute view key pressed. This key

allow s commute view betw een tw o

parameters (values) defined by

parameters P842 and P843

%SB6010 4 84 CFW_STS_IRC_1_KEY_P Confirm/Program key pressed

Equipments (Devices)

WPS v2.5X | 177

%SB6010 5 85 CFW_STS_IRC_1_KEY_SFK1 Special Function key 1 pressed

%SB6010 6 86 CFW_STS_IRC_1_KEY_SFK2 Special Function key 2 pressed

%SB6010 7 87 CFW_STS_IRC_1_KEY_SFK3 Special Function key 3 pressed

Reading - Function Modbus 04 "Read Input Registers"

Speed

%

SW6200
-- 3100 CFW_STS_MOTOR_SPEED_13BITS Motor speed in 13 bits (8192)

%

SW6202
-- 3101 CFW_STS_MOTOR_SYNC_SPEED Motor synchronous speed in rpm

%

SW6204
-- 3102 CFW_STS_MOTOR_SPEED_RPM Motor speed in rpm

%

SW6206
-- 3103 CFW_STS_SPEED_REFERENCE Speed reference after ramp in rpm

Alarm and Fault

%

SW6208
-- 3104 CFW_STS_PRES_ALARM Alarm number that may be present in the inverter

%

SW6210
-- 3105 CFW_STS_PRES_FAULT Fault number that may be present in the inverter

Current and Torque

%

SW6212
-- 3106 CFW_STS_RATED_CURRENT Inverter rated current (HD) in A (x10)

%

SW6214
-- 3107 CFW_STS_MOTOR_CURRENT Motor current w ithout f ilter in A (x10)

%

SW6216
-- 3108 CFW_STS_MOTOR_TORQUE Motor torque w ithout f ilter in % (x10)

Writing / Reading System Markers (Command)

Reading - Function Modbus 01 "Read Coils"
Writing - Function Modbus 05 "Write Single Coil" and 15 "Write Multiple Coils"

Equipments (Devices)

WPS v2.5X | 178

Address Bit Modbus Tag Description

Logical Command

%CB6008 0 16 CFW_CMD_RUN_STOP
Run the motor according to the speed reference value (0-

Stop, 1-Run)

%CB6008 1 17 CFW_CMD_GENERAL_ENABLE
Enables the inverter allow ing the motor operation (0-Disable,

1-Enable)

%CB6008 2 18 CFW_CMD_SPEED_DIRECTION
The motor runs in the direction indicated by the speed

reference (0-Reverse, 1-Forw ard)

%CB6008 3 19 CFW_CMD_JOG Enables the JOG function (0-Disable, 1-Enable)

%CB6008 4 20 CFW_CMD_LOC_REM Selects the inverter operation mode (0-Local, 1-Remote)

%CB6008 5 21 CFW_CMD_SECOND_RAMP
Selects the ramp to accelerate and decelerate the motor (0-

First, 1-Second)

%CB6008 6 22
CFW_CMD_FORCE_RUN_STOP_SPL

C

It allow s that the SoftPLC command CFW_CMD_RUN_STOP

change the inverter command Run/Stop regardless of source

programmed for Start/Stop via P224 or P227

%CB6008 7 23 CFW_CMD_FAULT_RESET Executes the fault reset command

11.1.3 I/O's

Hardware information can be found in the Manual of the CFW100 at the website www.weg.net.

Digital Inputs

Address Bit Modbus Tag Description

%IB0 0 16000 DI1 Digital input 1

%IB0 1 16001 DI2 Digital input 2

%IB0 2 16002 DI3 Digital input 3

%IB0 3 16003 DI4 Digital input 4

%IB0 4 16004 DI5 Digital input 5 - I/O expansion module

%IB0 5 16005 DI6 Digital input 6 - I/O expansion module

%IB0 6 16006 DI7 Digital input 7 - I/O expansion module

%IB0 7 16007 DI8 Digital input 8 - I/O expansion module

Analog Inputs

Address Bit Modbus Tag Description

%IW2 -- 5001 AI1 Analog input 1 - I/O expansion module

%IW6 -- 5003 AIP Analog input (Potentiometer) - I/O expansion module

%IW8 -- 5004 FI1 Frequency Input 1

Digital Outputs

http://www.weg.net

Equipments (Devices)

WPS v2.5X | 179

Address Bit Modbus Tag Description

%QB0 0 16000 DO1 Digital output 1 - I/O expansion module

%QB0 1 16001 DO2 Digital output 2 - I/O expansion module

%QB0 2 16002 DO3 Digital output 3 - I/O expansion module

Analog Outputs

Address Bit Modbus Tag Description

%QW2 -- 5001 AO1 Analog output 1 - I/O expansion module

11.1.4 Import from WLP

The function import from WLP is utilized to import Ladder developed on WLP software to equipment (device).

The import from WLP can be executed during the resource creation.

1. To execute the import WLP function click the Import from WLP button and select the WLP project folder or
the WLP BKP file.

Equipments (Devices)

WPS v2.5X | 180

Equipments (Devices)

WPS v2.5X | 181

2. After import from WLP completed successfully click the Finish button to copy the imported files to new
resource.

11.1.5 Parameters

11.1.5.1 Overview

The parameter configuration screen is used to configure and monitor all the parameters of the equipment,
including the user parameters.

NOTE!
The reading and writing of such parameters is done on this screen; only the user parameter
configuration must be sent the first time or whenever modified by means of the resource
download routine.

Below is an overview of the parameter configuration screen.

Equipments (Devices)

WPS v2.5X | 182

1. Parameter files. In this part are all the parameter configuration files created by the user. Notice that when
the file features a person figure on the table, it means this parameter table contains hidden parameters/
group of parameters.

2. Group of parameters. This tree shows all the group of parameters. Notice that the same parameter can be
in more than one group, and when its value is modified, it will be modified in all the groups to which it
belongs.

3. Modified group of parameters. Group of parameters which contain the figure of a person on the table
means they have hidden parameters.

4. Commands. The commands are described below in the order they appear:
4.1.Unhide parameter: In case some parameter has been hidden, this button allows making it visible

again.
4.2.Hide parameter: Just select one or more parameters on the table and trigger this command to hide

them.
4.3.Save table: It saves the values of the parameters shown on the equipment screen; the sent values are

the ones in the User column. The flow is User -> Monitored (equipment)
4.4.Read table: It reads the parameters of the equipment shown in the Monitored column and saves them

in the parameter file in the User column. The flow is Monitored (equipment) -> User
4.5.User parameters: It opens a screen to edit the user parameters.
4.6.Filter: It opens a parameter filter option, and it can filter by parameter number or description.
4.7.User Parameters and Monitored Parameters. These two columns show the off-line and on-line

parameters, so to speak. The User column shows the values contained in the file located on the
computer and the Monitored column shows the values that are effectively saved on the equipment.
Whenever you use the Save Parameter option, the sent values will be from the User column to the
Monitored column, that is, File -> Equipment. In case of reading, the flow is the opposite, from the
Monitored column to the User column, that is, Equipment -> File. In case you wish to change the
values directly on the equipment without changing it in the file, just click on the monitored column,

Equipments (Devices)

WPS v2.5X | 183

change the values and the modification will occur on-line.
5. Modified parameters: Whenever a parameter value in the User column is different from the Monitored

column, it will be shown in red.
6. Output. This screen shows error information in case they occur during the writing or reading of the

parameters.

11.1.5.2 Configuration

Below is the list of the required steps to create a parameter file.

1. Create a new parameter file.

2. Define a name for the parameter file

3. Configure which parameters you wish to view in your parameter table

Equipments (Devices)

WPS v2.5X | 184

4. After performing the steps above, the parameter file will be created and the equipment can be
parameterized.

Equipments (Devices)

WPS v2.5X | 185

11.1.5.3 Read and Write of Parameters

There are 3 (three) ways to do the reading and writing of the parameters: by means of table, selection and
group.

1. Table writing. The table writing command will send all visible parameters on the equipment screen. If and
error occurs during the sending of some specific parameter, a message will be shown on the output window
informing the error. It is important to notice that only visible parameters will be sent; therefore, it is necessary
attention to which node of the group of parameters tree you are viewing. Example: If you wish to write all of
them without filtering per group, just select the tree root.

Equipments (Devices)

WPS v2.5X | 186

2. Table reading. The table reading command will read all the parameters of the equipment. If a error occurs
during the reading of some specific parameter, a message will be shown on the output window informing the
error. It is important to notice that only visible parameters will be read; therefore, it is necessary attention to
which node of the group of parameters tree you are viewing. Example: If you wish to read all of them without
filtering per group, just select the tree root.

Equipments (Devices)

WPS v2.5X | 187

3. Reading/writing of specific parameters. In order to read/write one or more specific parameters, just
select them on the table, right click and choose the desired option: read or write parameter.

4. Reading/writing of group of parameters. In order to read/write only one group of parameters, just select
it on the group tree, right click and choose the desired option: read or write group.

Equipments (Devices)

WPS v2.5X | 188

11.1.5.4 Hide/Unhide Parameters and Group of Parameters

The parameter can be hidden/unhidden in two ways: individually or in group.

1. Hide parameters. In order to hide a parameter individually, just right click on the desired parameters and
select the Hide Parameter option. You can also press the Delete key.

2. Unhide Parameters. In order to show hidden parameters, right click and choose the Unhide Parameters

Equipments (Devices)

WPS v2.5X | 189

or press the Insert key. Then, a window will open and show the hidden parameters. Now, you just have to
select the desired parameters and confirm.
Note: The parameters shown on this new window are only those which belong to the current filter according to
the selection on the parameter group tree. In the figures below, the CAN group is selected; that means that
only the hidden parameters of this group will be shown.

Equipments (Devices)

WPS v2.5X | 190

Equipments (Devices)

WPS v2.5X | 191

3. Hide Group of Parameters. In order to hide a group of parameters, just select the group on the tree and
use the Hide Group option.

Equipments (Devices)

WPS v2.5X | 192

Equipments (Devices)

WPS v2.5X | 193

4. Unhide Group of Parameters. In order to show a hidden group of parameters, just select the root of the
group tree and select the Unhide Group option. A window will open showing the groups that are hidden; then
just select the group you wish to unhide.

Equipments (Devices)

WPS v2.5X | 194

Equipments (Devices)

WPS v2.5X | 195

Equipments (Devices)

WPS v2.5X | 196

5. Hide and Show Parameters and Groups of Parameters. By means of this option, you have full control
of the parameters and groups of parameters. It is possible to hide and unhide individual parameters, multiple
parameters, individual groups and multiple groups in the same action.

Equipments (Devices)

WPS v2.5X | 197

Equipments (Devices)

WPS v2.5X | 198

11.1.5.5 User Parameters

In order to open the configuration screen of the user parameters, just click on the User Parameters option on
the Parameter node of the project tree or click on the icon indicated on the tool bar of the parameter file.

Configuration Table.

On the user parameter configuration table, it is possible to define several attributes to the parameters, such as
description, minimum and maximum values, unit, digits, data type, etc.

NOTE!
These settings will be automatically displayed in the parameter table. However, to be sent to the
device, you need to download the resource.

Equipments (Devices)

WPS v2.5X | 199

Table fields:

Parameter: User parameter identification.

Description: Description of the user parameter in the parameter table. On devices that have text-based
HMIs, the description is sent to the machine and displayed on the HMI.

Minimum: Minimum input value for parameter.

Maximum: Maximum input value for parameter.

Unit: Unit displayed on the device's HMI.

Default: Value loaded when restore factory default is selected.

Retentive: Retain value after rebooting devices.

Hexadecimal: Displays the value in hexadecimal.

Digits: Number of decimal digits for displaying value.

Datatype: Parameter datatype used by the ladder application.

Password: Enables password request by changing parameter value.

Equipments (Devices)

WPS v2.5X | 200

Read only: It does not allow the writing of values in the parameter by the communication network or the HMI.
Writing is done only by the ladder application.

Display HMI: Displays the parameter in the HMI.

Performs modification: Confirmation options when changing the parameter:
o No confirmation: Does not prompt for confirmation when changing parameter.
o With confirmation and engine stopped: Request confirmation and allow change only with engine stopped.
o With confirmation: Prompt for confirmation when changing parameter.

Stopped motor: Perform change only with motor stopped.

Help: On devices that have text-based HMI, you can edit a help text for the parameter.

View the user parameter

In the parameter table, the user parameters will be shown as they are configured on the configuration screen.

11.1.6 Ladder

11.1.6.1 Coil

11.1.6.1.1 DIRECTCOIL

Logical block used to assign direct values of the output variables.

Equipments (Devices)

WPS v2.5X | 201

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

Operation

The block transfers the value of A for the memory address corresponding to O1.

Diagram

Block Flowchart

Example

The above example keeps the digital output DO9 permanently connected, because the value of A in
this case is the value of the left bus which is always considered high logic level (TRUE).

11.1.6.1.2 INVERTEDCOIL

Logical block used for assigning values denied to output variables.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 202

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

Operation

The block transfers the denied value of A for the memory address corresponding to O1.

Diagram

Block Flowchart

Example

The above example disables the digital output DO3 when some of the digital inputs DI1 and DI2 are
with FALSE value. When both inputs are with a TRUE value, DO3 activates.

Equipments (Devices)

WPS v2.5X | 203

11.1.6.1.3 RESETCOIL

Logical block used for indefinite disabling of output variables.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

Operation

When identifying a TRUE value in A, this block transfers a FALSE value to the memory address
corresponding to O1.
When identifying a FALSE value in A, this block performs no operation.

Diagram

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 204

The example above activates permanently the system control marker that enables end-of-message
character in RS232 communication to identify a TRUE level at the digital input DI5.

11.1.6.1.4 SETCOIL

Logical block used for indefinite enabling of output variables.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

Operation

When identifying a TRUE value in A, this block transfers the value of A for the memory address
corresponding to O1.
When identifying a FALSE value in A, this block performs no operation.

Diagram

Block Flowchart

Equipments (Devices)

WPS v2.5X | 205

Example

The example above activates permanently the system control marker that enables end-of-message
character in RS232 communication to identify a TRUE level at the digital input DI6.

11.1.6.1.5 TOGGLECOIL

Logical block used for output variables alternance.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

VAR TOGGLECOIL_INST_0 TOGGLECOIL Instance of access to block structure

Operation

When identifying a transition from FALSE to TRUE (leading edge) on A, the block reverses the status
of O1.

Diagram

Equipments (Devices)

WPS v2.5X | 206

Block Flowchart

Example

The above example inverts the state of the digital output DO6 to each disabling the internal buzzer.

11.1.6.2 Communication Network

11.1.6.2.1 Modbus RTU

11.1.6.2.1.1 Modbus RTU Overview

Operation in the Modbus RTU Network - Master Mode

The CFW300 allows operation as a master for the Modbus RTU network. For this operation, it is necessary to
observe the following points:

Only interface RS485 allows operation as a network master.
It is necessary to program, in product configurations, the operation mode as "Master", besides the
communication rate, parity, and stop bits, which must be the same for the whole equipment in the network.
The Modbus RTU network master does not have an address, so the address configured in the CFW300 is
not used.
Sending and receiving telegrams via RS485 interface using the Modbus RTU is programmed by using blocks
in Ladder programming language. It is necessary to know the available blocks and the Ladder programming
software in order to be able to program the network master.

Equipments (Devices)

WPS v2.5X | 207

The following functions are available for the sending of requisitions by the Modbus master:
o Function 01: Read Coils
o Function 02: Read Discrete Inputs
o Function 03: Read Holding Registers
o Function 04: Read Input Registers
o Function 05: Write Single Coil
o Function 06: Write Single Register
o Function 15: Write Multiple Coils
o Function 16: Write Multiple Registers

Blocks to program the master

In order to control and monitor the Modbus RTU communication using the CFW300, the following blocks were
developed, and they must be used when programming in Ladder.

11.1.6.2.1.2 MB_MasterControlStatus

Block that allows monitoring various statuses of the Modbus RTU network master.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 208

Variable Type Name Data Type Description

VAR_INPUT
Execute BOOL Block enabling

DisableComm BOOL Disables Modbus RTU communication

VAR_OUTPUT

Done BOOL Output enabling

CommDisabled BOOL Disabled communication f lag

TxCounter WORD UINT Counter of requests sent

RxCounter WORD UINT Counter of telegrams received

NoAnswerCounter WORD UINT Counter of requests not answ ered

ErrorResponseCounter WORD UINT
Counter of responses received w ith error

information

LastErrorSlaveAddress BYTE USINT
Slave address in w hich the last communication

error w as detected

LastErrorResult BYTE USINT

Operation result of the last communication error

received

(0 = No error)

(4 – Response Timeout)

(5 = Slave returned error)

LastErrorCode BYTE USINT Code of the last communication error received

Operation

This block remains active while Execute is at TRUE level, updating its outputs according to the
monitoring of the master and input requests. When Execute receives FALSE level, the inputs are
ignored and the outputs are zeroed. The Done output receives TRUE level when Execute has TRUE
level and block finished its execution.

A TRUE level DisableComm disables the Modbus RTU communication and resets the status counters
and markers of the master. These markers and counters are displayed in the output block each
having some data corresponding to its description. Their values are also cleared at shutdown of the
master.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 209

Example

The example above requests status data of the Modbus RTU network master, and allows disabling
communication through DISABLE. The block ends successfully, Done output is activated.

11.1.6.2.1.3 MB_ReadBinary

Block that performs a reading of up to 128 binary data (via Read Coils or Read Discrete Inputs) of a
slave on the Modbus RTU network.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 210

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

SlaveAddress BYTE Slave address

Function# BYTE Reading function code

InitialDataAddress WORD Initial bit address of the data to be read

NumberOfData BYTE Number of bits to be read (1 to 128)

Timeout# WORD
Maximum w aiting time for the slave response

[ms]

Offset# BOOL
Offset Indication in InitialDataAddress, i.e., need

to subtract 1 from this number

VAR_OUTPUT

Done BOOL Output enabling

Active BOOL Aw aiting response f lag

Busy BOOL
Flag indicating the RS485 interface is busy w ith

another request

Error BOOL Error in the execution f lag

ErrorID BYTE Identif ier of the occurred error

Value BOOL Variable that stores the received data

VAR MB_READBINARY_INST_0 MB_READBINARY Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it checks whether the Modbus slave RTU in
specified address in SlaveAddress is free to send data (Busy variable at FALSE level). If so, it sends
the reading request of a number of bits indicated by NumberOfData in InitialDataAddress address
using chosen function in Function# and sets the Active output, resetting it when receiving the
response from the slave. The received data is stored in the Value variable. If the slave is not free, the
block waits Busy go to FALSE level to resubmit the request.

NOTE!
If Execute goes to FALSE level and Busy is still at TRUE level, the request is canceled.

NOTE!
Value is an array of size equal to NumberOfData. It is important to check this compatibility not to
generate errors in the block.

Equipments (Devices)

WPS v2.5X | 211

When Execute has FALSE value, Done remains FALSE. The Done output is only activated when the
block finishes executing successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Code Description

0 Executed successfully

1 Invalid input data

2 Master not enabled

4 Timeout in slave response

5 Slave returned error

Block Flowchart

Equipments (Devices)

WPS v2.5X | 212

Equipments (Devices)

WPS v2.5X | 213

Example

The above example requests reading of a number of binary data described by DATA_COUNT
positioned in the INIT Modbus RTU slave of SLAVE address through the Read Discrete Input function.
These data are forwarded to VALUE. The block ends successfully, Done output is activated.

11.1.6.2.1.4 MB_ReadRegister

Block that performs a reading of up to 64 16-bit registers (via Read Holding Registers or Read Input
Registers) of a slave on the Modbus RTU network.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 214

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

SlaveAddress BYTE Slave address

Function# BYTE Reading function code

InitialDataAddress WORD Initial register address to be read

NumberOfData BYTE Number of registers to be read (1 to 64)

Timeout# WORD
Maximum w aiting time for the slave response

[ms]

Offset# BOOL
Offset Indication in InitialDataAddress, i.e., need

to subtract 1 from this number

VAR_OUTPUT

Done BOOL Output enabling

Active BOOL Aw aiting response f lag

Busy BOOL
Flag indicating the RS485 interface is busy w ith

another request

Error BOOL Error in the execution f lag

ErrorID BYTE Identif ier of the occurred error

Value

BYTE SINT USINT

WORD UINT INT

DWORD UDINT

DINT REAL

Variable that stores the received data

VAR
MB_READREGISTER

_INST_0
MB_READREGISTER Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it checks whether the Modbus RTU slave in
specified address in SlaveAddress is free to send data (Busy variable at FALSE level). If so, it sends
the reading request of a number of registers indicated by NumberOfData in InitialDataAddress address
using chosen function in Function# and sets the Active output, resetting them when receiving the
response from the slave. The received data is stored in the Value variable. If the slave is not free, the
block waits Busy go to FALSE level to resubmit the request.

NOTE!
If Execute goes to FALSE level and Busy is still at TRUE level, the request is canceled.

NOTE!
Value is an array of number of bits NumberOfData multiplied by 16. That is, if NumberOfData is
16, Value can be an array of 32 BYTE positions, 16 WORD positions or 8 DWORD positions. It
is important to check this compatibility not to generate errors in the block.

When Execute has FALSE value, Done remains FALSE. The Done output is only activated when the
block finishes executing successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Equipments (Devices)

WPS v2.5X | 215

Code Description

0 Executed successfully

1 Invalid input data

2 Master not enabled

4 Timeout in slave response

5 Slave returned error

Block Flowchart

Equipments (Devices)

WPS v2.5X | 216

Equipments (Devices)

WPS v2.5X | 217

Example

The above example requests reading of a number of binary data described by DATA_COUNT
positioned in the INIT in the Modbus RTU slave of SLAVE address through the Read Input Register
function. These data are forwarded to VALUE. The block ends successfully, Done output is activated.

11.1.6.2.1.5 MB_SlaveStatus

Block that allows monitoring the status of 4 slaves of the Modbus RTU network.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

ErrorsToSetOffline# BYTE
Amount of errors that the master must identify until it

considers communication w ith an off line slave

AddressSlave1# BYTE Slave address 1 to be monitored

AddressSlave2# BYTE Slave address 2 to be monitored

AddressSlave3# BYTE Slave address 3 to be monitored

AddressSlave4# BYTE Slave address 4 to be monitored

VAR_OUTPUT

Done BOOL Output enabling

GeneralOffline BOOL
Flag indicating any one of the monitored

communication is off line

Slave1Offline BOOL Flag of off line status slave 1

Slave2Offline BOOL Flag of off line status slave 2

Slave3Offline BOOL Flag of off line status slave 3

Slave4Offline BOOL Flag of off line status slave 4

Equipments (Devices)

WPS v2.5X | 218

Operation

This block remains active while Execute is at TRUE level, updating its outputs according to the
number of errors recorded for each slave. When Execute receives FALSE level, the inputs are ignored
and the outputs are zeroed. The Done output receives TRUE level when Execute has TRUE level and
block finished its execution.

The ErrorsToSetOffline # input allows registering the number of errors identified in a slave that will
feature an offline communication. AddressSlave inputs allow inserting four slave addresses to be
monitored. When this monitored slave reports the programmed number of errors, its corresponding
SlaveOffline output is set to TRUE level. If any of SlaveOffline outputs is at TRUE level, GeneralOffline
also receives TRUE level.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 219

The above example checks the number of error responses sent by the slaves 2, 4, 6 and 8 of the
Modbus RTU. If any of them is greater than 5, its SX_OFF status is led to TRUE level. The block ends
successfully, Done output is activated.

11.1.6.2.1.6 MB_WriteBinary

Block that performs a writing of up to 128 binary data (via Write Single Coil or Write Multiple Coils) in
a slave on the Modbus RTU network.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 220

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

SlaveAddress BYTE Slave address

Function# BYTE Writing function code

InitialDataAddress WORD Initial bit address w here the data w ill be w ritten

NumberOfData BYTE Number of bits to be w ritten (1 to 128)

Timeout# WORD Maximum w aiting time for the slave response [ms]

Offset# BOOL
Offset Indication in InitialDataAddress, i.e., need to

subtract 1 from this number

Value BOOL Variable that stores the data to be w ritten

VAR_OUTPUT

Done BOOL Output enabling

Active BOOL Aw aiting response f lag

Busy BOOL
Flag indicating the RS485 interface is busy w ith

another request

Error BOOL Error in the execution f lag

ErrorID BYTE Identif ier of the occurred error

VAR
MB_WRITEBINARY

_INST_0
MB_WRITEBINARY Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it checks whether the Modbus RTU slave in
specified address in SlaveAddress is free to send data (Busy variable at FALSE level). If so, it sends
the writing request of a number of bits indicated by NumberOfData in InitialDataAddress address
using chosen function in Function# and sets the Active output, resetting it when receiving the
response from the slave. If the slave is not free, the block waits Busy go to FALSE level to resubmit
the request.

NOTE!
If Execute goes to FALSE level and Busy is still at TRUE level, the request is canceled.

NOTE!
Value is an array of size equal to NumberOfData. It is important to check this compatibility not to
generate errors in the block.

When Execute has FALSE value, Done remains FALSE. The Done output is only activated when the
block finishes executing successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Equipments (Devices)

WPS v2.5X | 221

Code Description

0 Executed successfully

1 Invalid input data

2 Master not enabled

4 Timeout in slave response

5 Slave returned error

Block Flowchart

Equipments (Devices)

WPS v2.5X | 222

Equipments (Devices)

WPS v2.5X | 223

Example

The example above requests written data contained in VALUE, with size described by DATA_COUNT,
at addresses positioned from INIT on Modbus RTU slave at address SLAVE using the function Write
Single Coil. The block ends successfully, Done output is activated.

11.1.6.2.1.7 MB_WriteRegister

Block that performs a reading of up to sixteen 16-bit registers (via Write Single Register or Write
Multiple Registers) of a slave on the Modbus RTU network.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 224

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

SlaveAddress BYTE Slave address

Function# BYTE Writing function code

InitialDataAddress WORD Initial register address to be w ritten

NumberOfData BYTE Number of registers to be w ritten (1 to 16)

Timeout# WORD
Maximum w aiting time for the slave response

[ms]

Offset# BOOL
Offset Indication in InitialDataAddress, i.e.,

need to subtract 1 from this number

Value

BYTE SINT USINT

WORD UINT INT

DWORD UDINT DINT

REAL

Variable that stores the data to be w ritten

VAR_OUTPUT

Done BOOL Output enabling

Active BOOL Aw aiting response f lag

Busy BOOL
Flag indicating the RS485 interface is busy

w ith another request

Error BOOL Error in the execution f lag

ErrorID BYTE Identif ier of the occurred error

VAR
MB_WRITEREGISTER

_INST_0
MB_WRITEREGISTER Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it checks whether the Modbus RTU slave in
specified address in SlaveAddress is free to send data (Busy variable at FALSE level). If so, it sends
the writing request of Value values in a number of registers indicated by NumberOfData in
InitialDataAddress address using chosen function in Function# and sets the Active output, resetting it
when receiving the response from the slave. If the slave is not free, the block waits Busy go to FALSE
level to resubmit the request.

NOTE!
If Execute goes to FALSE level and Busy is still at TRUE level, the request is canceled.

NOTE!
Value is an array of number of bits NumberOfData multiplied by 16. That is, if NumberOfData is
16, Value can be an array of 32 BYTE positions, 16 WORD positions or 8 DWORD positions. It
is important to check this compatibility not to generate errors in the block.

When Execute has FALSE value, Done remains FALSE. The Done output is only activated when the
block finishes executing successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Equipments (Devices)

WPS v2.5X | 225

Code Description

0 Executed successfully

1 Invalid input data

2 Master not enabled

4 Timeout in slave response

5 Slave returned error

Block Flowchart

Equipments (Devices)

WPS v2.5X | 226

Equipments (Devices)

WPS v2.5X | 227

Example

The example above requests written data contained in VALUE, with size described by DATA_COUNT,
at addresses positioned from INIT on Modbus RTU slave at address SLAVE using the function Write
Single Register. The block ends successfully, Done output is activated.

11.1.6.3 Compare

11.1.6.3.1 COMP_EQ

Block that compares the values of Value1 and Value2, enabling the output Q if both are equal.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of equality

Operation

When this block has a TRUE value in EN, it sends to the output Q the TRUE value if Value1 and
Value2 are the same. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 228

Example

The example above checks equality between VALUE1 and VALUE2. Since both variables have the
same value, the Q output is activated.

The example above checks equality between VALUE1 and VALUE2. Since both variables have the
same value, the Q output is activated. Notice that the types of the input variables can be different
without causing execution problems.

Equipments (Devices)

WPS v2.5X | 229

The example above checks equality between VALUE1 and VALUE2. Since both variables have
different values, the Q output is disabled.

11.1.6.3.2 COMP_GE

Block that compares the values of Value1 and Value2, enabling the output Q if Value1 is higher than
or equal to Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of equality or majority of Value1

Operation

When this block has a TRUE value in EN it sends the Q output to the TRUE value if Value1 is higher
than or equal to Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 230

Example

The example above checks equality or majority of VALUE1 in relation to VALUE2. Since VALUE1
has lower value than VALUE2, the Q output is disabled.

The example above checks equality or majority of VALUE1 in relation to VALUE2. Since both
variables have the same value, the Q output is activated.

Equipments (Devices)

WPS v2.5X | 231

The example above checks equality or majority of VALUE1 in relation to VALUE2. Since VALUE1
has higher value than VALUE2, the Q output is activated.

11.1.6.3.3 COMP_GT

Block that compares the values of Value1 and Value2, enabling the output Q if Value1 is higher than
Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of majority of Value1

Operation

When this block has a TRUE value in EN, it sends to the Q output the TRUE value if Value1 is higher
than Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 232

Example

The example above checks the majority of VALUE1 in relation to VALUE2. Since VALUE1 has lower
value than VALUE2, the Q output is disabled.

The example above checks the majority of VALUE1 in relation to VALUE2. Since both variables have
the same value, the Q output is disabled.

Equipments (Devices)

WPS v2.5X | 233

The example above checks the majority of VALUE1 in relation to VALUE2. Since VALUE1 has higher
value than VALUE2, the Q output is activated.

11.1.6.3.4 COMP_LE

Block that compares the values of Value1 and Value2, enabling the output Q if Value1 is lower than or
equal to Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of equality or minority of Value1

Operation

When this block has a TRUE value in EN, it sends to the Q output the TRUE value if Value1 is lower
than or equal to Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 234

Example

The example above checks equality or minority of VALUE1 in relation to VALUE2. Since VALUE1
has lower value than VALUE2, the Q output is activated.

The example above checks equality or minority of VALUE1 in relation to VALUE2. Since both
variables have the same value, the Q output is activated.

Equipments (Devices)

WPS v2.5X | 235

The example above checks equality or minority of VALUE1 in relation to VALUE2. Since VALUE1
has higher value than VALUE2, the Q output is disabled.

11.1.6.3.5 COMP_LT

Block that compares the values of Value1 and Value2, enabling the output Q if Value1 is lower than
Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of minority of Value1

Operation

When this block has a TRUE value in EN, it sends to the Q output the TRUE value if Value1 is lower
than or equal to Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 236

Example

The example above checks minority of VALUE1 in relation to VALUE2. Since VALUE1 has lower
value than VALUE2, the Q output is activated.

The example above checks the minority of VALUE1 in relation to VALUE2. Since both variables have
the same value, the Q output is disabled.

Equipments (Devices)

WPS v2.5X | 237

The example above checks the minority of VALUE1 in relation to VALUE2. Since VALUE1 has higher
value than VALUE2, the Q output is disabled.

11.1.6.3.6 COMP_NE

Block that compares the values of Value1 and Value2, enabling the Q output if Value1 is different from
Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of inequality

Operation

When this block has a TRUE value in EN, it sends to the Q output the TRUE value if Value1 is
different from Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 238

Example

The example above checks inequality between VALUE1 and VALUE2. Since both variables have
different values, the Q output is activated.

The example above checks equality between VALUE1 and VALUE2. Since both variables have the
same value, the Q output is disabled.

11.1.6.4 Contact

11.1.6.4.1 NCCONTACT

Normally closed contact.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 239

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT I1 BOOL Block control input

Operation

When variable I1 is with TRUE value, B receives FALSE.
When variable I1 is with FALSE value, B receives the value of A.

NOTE!
Watch out for series and parallel associations of contacts. Refer to section Contact Logic for
further information.

Diagram

Block Flowchart

Equipments (Devices)

WPS v2.5X | 240

Example

The above example performs the transfer of the opposite value of digital input DI1 to the digital output
DO2.

11.1.6.4.2 NOCONTACT

Normally open contact.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT I1 BOOL Block control input

Operation

When variable I1 is with FALSE value, B receives FALSE.
When variable I1 is with TRUE value, B receives the value of A.

NOTE!
Watch out for series and parallel associations of contacts. Refer to section Contact Logic for
further information.

Diagram

Block Flowchart

Equipments (Devices)

WPS v2.5X | 241

Example

The above example performs the transfer of the value of digital input DI1 to the digital output DO2.

11.1.6.4.3 NTSCONTACT

Falling edge transition contact.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT I1 BOOL Block control input

VAR NTSCONTACT_INST_0 NTSCONTACT Instance of access to block structure

Operation

At the instant the variable I1 transitions from TRUE to FALSE (falling edge or negative edge
transition), B receives the value of A for a scan cycle.
At all other times, B receives the FALSE value.

NOTE!
Watch out for series and parallel associations of contacts. Refer to section Contact Logic for
further information.

Diagram

Equipments (Devices)

WPS v2.5X | 242

Block Flowchart

Example

The above example resets the digital output DO1 if the SHIFT key is pressed or a positive pulse on
the digital input DI2 is given.

11.1.6.4.4 PTSCONTACT

Leading edge transition contact.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 243

Block Structure

Variable Type Name Data Type Description

VAR_INPUT I1 BOOL Block control input

VAR PTSCONTACT_INST_0 PTSCONTACT Instance of access to block structure

Operation

At the instant the variable I1 transitions from FALSE to TRUE (leading edge or positive edge
transition), B receives the value of A for a scan cycle.
At all other times, B receives the FALSE value.

NOTE!
Watch out for series and parallel associations of contacts. Refer to section Contact Logic for
further information.

Diagram

Block Flowchart

Equipments (Devices)

WPS v2.5X | 244

Example

The above example resets the digital output DO1 if the SHIFT key is pressed and a positive pulse on
the digital input DI2 is given.

11.1.6.5 Control

11.1.6.5.1 PID

Block that performs the function of a discrete PID controller. From the input variables, it calculates the
corresponding controller output.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 245

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

SetPoint REAL Automatic reference (pre-control)

ManualSetPoint REAL Forced reference (post control)

SelectSetPoint BOOL Selects w hich reference to use

Feedback REAL Feedback loop variable

MinimumOutput REAL Minimum value of the controller output

MaximumOutput REAL Maximum value of the controller output

Kp REAL Proportional gain

Ki REAL Integral gain

Kd REAL Derivative gain

TauSetPoint# REAL Time constant of the automatic reference in put f ilter

Type# BYTE Controller type

Action# BYTE Control action

Ts# UINT Sampling time [ms]

VAR_OUTPUT
ENO BOOL Output enabling

Output REAL Controller output

VAR PID_INST_0 PID Instance of access to block structure

Operation

On the positive transition edge in EN, Output receives zero value, and the block executes its
functionality as EN is at TRUE level.

When enabled, this block performs a routine PID control with the Kp, Ki and Kd parameters chosen.
The PID topology used may be the Academic or Parallel, depending on what is chosen in Type#.

Academic Form:

Parallel Form:

Equipments (Devices)

WPS v2.5X | 246

The levels of the output signal of the controller are saturated at value MinimumOutput and
MaximumOutput. The SelectSetPoint input level FALSE causes the SetPoint reference be adopted,
allowing the controller maintains control over the process. When SelectSetPoint goes to TRUE level,
the controller has no more domain, and ManualSetPoint becomes to be considered the output signal
of the controller.

Action# will define the feedback operation. If Action# is DIRECT, the operation will be SetPoint –
Feedback. If Action# is REVERSE, the operation will be Feedback – SetPoint.

Feedback receives the process variable considered as the plant output. Ts# receives the sampling
time for the controller and # TauSetPoint receives the time constant for the input filter of the automatic
reference.

When EN has FALSE value, Output remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

NOTE!
Effects of the alteration of gains on the process

If Kp decreases, the process becomes slower; generally more stable or less oscillating; it has
less overshoot.
If Kp increases, the process responds faster; it may become more unstable or more
oscillating; it has more overshoot.
If Ki decreases, the process becomes slower, lagging to reach the "SetPoint"; it becomes
more stable or less oscillating; it has less overshoot.
If Ki increases, the process becomes faster, quickly reaching the "SetPoint"; it becomes more
unstable or more oscillating; it has more overshoot.
If Kd decreases, the process becomes slower; it has less overshoot.
If Kd increases, it has more overshoot.

Equipments (Devices)

WPS v2.5X | 247

NOTE!
How to improve the performance of the process through the adjustment of gains (valid for the
Academic PID)

If the performance of the process is almost good, but the overshoot is a bit high, try to: (1)
decrease Kp 20%, (2) decrease Ki 20% and/or (3) decrease Kd 50%.
If the performance of the process is almost good, but it does not have overshoot and lags to
reach the "SetPoint", try to: (1) increase Kp 20%, (2) increase Ki 20% and/or (3) increase Kd
50%.
If the performance of the process is good, but the process output is varying too much, try to:
(1) increase Kd 50%, (2) decrease Kp 20%.
If the performance of the process is bad, i.e. after start up, the transitory lasts several periods
of oscillation that reduce very slowly or never reduce at all, try to: (1) decrease Kp 50%.
If the performance of the process is bad, i.e. after start up it slowly moves towards the
"SetPoint" without overshoot, but is still very far and the process output is less than the rated
value, try to: (1) increase Kp 50%, (2) increase Ki 50%, (3) increase Kd 70%.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 248

Equipments (Devices)

WPS v2.5X | 249

Example

The above example creates a loop of a digital PID form with sampling time 50 ms, using the
constants KP, KI and KD for control. Automatic reference SETPOINT, filtered by a first order filter with
time constant of 0:01 is used. The error signal is calculated as the difference between the filtered
reference and variable SAIDA_PLANTA. The controller output is saturated between the values 0.1 and
2.5 and sent to the variable ENTRADA_PLANTA.

11.1.6.6 Conversion

11.1.6.6.1 BOOL

11.1.6.6.1.1 BYTE_TO_BOOL

Block that performs the conversion of a BYTE value into a BOOL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BYTE USINT SINT Value in BYTE

VAR_OUTPUT
ENO BOOL End of operation

Result BOOL Value in BOOL

Operation

When this block has a TRUE value in EN, it interprets the Value value as BYTE and converts it into
BOOL, storing in Result.

Equipments (Devices)

WPS v2.5X | 250

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

The examples above perform the conversion of VALUE variable, in BYTE, into a BOOL value storing

Equipments (Devices)

WPS v2.5X | 251

the final result in RESULT. The block ends with success and ENO output is activated.

11.1.6.6.1.2 DWORD_TO_BOOL

Block that performs the conversion of a DWORD value into a BOOL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT
ENO BOOL End of operation

Result BOOL Value in BOOL

Operation

When this block has a TRUE value in EN, it interprets the Value value as DWORD and converts it into
BOOL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 252

Example

The examples above perform the conversion of VALUE variable, in DWORD, into a BOOL value
storing the final result in RESULT. The block ends with success and ENO output is activated.

11.1.6.6.1.3 REAL_TO_BOOL

Block that performs the conversion of a REAL value into a BOOL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value in REAL

VAR_OUTPUT
ENO BOOL End of operation

Result BOOL Value in BOOL

Operation

When this block has a TRUE value in EN, it interprets the Value value as REAL and converts it into
BOOL, storing in Result.

When EN has FALSE value, Result remains unchanged.

Equipments (Devices)

WPS v2.5X | 253

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 254

The examples above perform the conversion of VALUE variable, in REAL, into a BOOL value storing
the final result in RESULT. The block ends with success and ENO output is activated. Notice in the
last example that the values very close to the machine epsilon may result in an interpretation of the
FALSE value.

11.1.6.6.1.4 WORD_TO_BOOL

Block that performs the conversion of a WORD value into a BOOL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT
ENO BOOL End of operation

Result BOOL Value in BOOL

Operation

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it into
BOOL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 255

Example

The examples above perform the conversion of VALUE variable, in WORD, into a BOOL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.1.6.6.2 BYTE

11.1.6.6.2.1 BOOL_TO_BYTE

Block that performs the conversion of a BOOL value into a BYTE value.

Equipments (Devices)

WPS v2.5X | 256

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BOOL Value in BOOL

VAR_OUTPUT
ENO BOOL End of operation

Result BYTE USINT SINT Value in BYTE

Operation

When this block has a TRUE value in EN, it interprets the Value value as BOOL and converts it into
BYTE, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 257

The examples above perform the conversion of variable VALUE, in BOOL, into a BYTE value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.1.6.6.2.2 DWORD_TO_BYTE

Block that performs the conversion of a DWORD value into a BYTE value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT
ENO BOOL End of operation

Result BYTE USINT SINT Value in BYTE

Operation

When this block has a TRUE value in EN, it interprets the Value value as DWORD and converts it into
BYTE, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 258

Example

The examples above perform the conversion of variable VALUE, in DWORD, into a BYTE value storing
the final result in RESULT. The block ends with success and ENO output is activated. Notice that
only the eight least significant bits are taken into account.

11.1.6.6.2.3 REAL_TO_BYTE

Block that performs the conversion of a REAL value into a BYTE value.

Equipments (Devices)

WPS v2.5X | 259

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value in REAL

VAR_OUTPUT
ENO BOOL End of operation

Result BYTE USINT SINT Value in BYTE

Operation

When this block has a TRUE value in EN, it interprets the Value value as REAL and converts it into
BYTE, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 260

The examples above perform the conversion of variable VALUE, in REAL, into a BYTE value storing
the final result in RESULT. The block ends with success and ENO output is activated. Notice that the
results are truncated in decimal and only the eight least significant bits are taken into account.

11.1.6.6.2.4 WORD_TO_BYTE

Block that performs the conversion of a WORD value into a BYTE value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT
ENO BOOL End of operation

Result BYTE USINT SINT Value in BYTE

Operation

Equipments (Devices)

WPS v2.5X | 261

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it into
BYTE, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 262

The examples above perform the conversion of variable VALUE, in WORD, into a BYTE value storing
the final result in RESULT. The block ends with success and ENO output is activated. Notice that
only the eight least significant bits are taken into account.

11.1.6.6.3 DWORD

11.1.6.6.3.1 BOOL_TO_DWORD

Block that performs the conversion of a BOOL value into a DWORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BOOL Value in BOOL

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as BOOL and converts it into
DWORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 263

Example

The examples above perform the conversion of VALUE variable, in BOOL, into a DWORD value
storing the final result in RESULT. The block ends with success and ENO output is activated.

11.1.6.6.3.2 BYTE_TO_DWORD

Block that performs the conversion of a BYTE value into a DWORD value.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 264

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BYTE USINT SINT Value in BYTE

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as BYTE and converts it into
DWORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 265

The examples above perform the conversion of variable VALUE, in BYTE, into a DWORD value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.1.6.6.3.3 REAL_TO_DWORD

Block that performs the conversion of a REAL value into a DWORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value in REAL

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as REAL and converts it into
DWORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 266

Example

The examples above perform the conversion of variable VALUE, in REAL, into a DWORD value storing
the final result in RESULT. The block ends with success and ENO output is activated. Note that the
results are truncated in decimal and only the thirty-two least significant bits are taken into account.

11.1.6.6.3.4 WORD_TO_DWORD

Block that performs the conversion of a WORD value into a DWORD value.

Equipments (Devices)

WPS v2.5X | 267

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it into
DWORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 268

The examples above convert the VALUE variable, in WORD, into a DWORD value storing the final
result in RESULT. The block ends with success and ENO output is activated.

11.1.6.6.4 REAL

11.1.6.6.4.1 BOOL_TO_REAL

Block that performs the conversion of a BOOL value into a REAL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BOOL Value in BOOL

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in REAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as BOOL and converts it into
REAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 269

Example

The examples above perform the conversion of variable VALUE, in BOOL, into a REAL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.1.6.6.4.2 BYTE_TO_REAL

Block that performs the conversion of a BYTE value into a REAL value.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 270

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BYTE USINT SINT Value in BYTE

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in REAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as BYTE and converts it into
REAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 271

The examples above perform the conversion of variable VALUE, in BYTE, into a REAL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.1.6.6.4.3 DWORD_TO_REAL

Block that performs the conversion of a DWORD value into a REAL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in REAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as DWORD and converts it into
REAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 272

Example

The examples above perform the conversion of variable VALUE, in DWORD, into a REAL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.1.6.6.4.4 WORD_TO_REAL

Block that performs the conversion of a WORD value into a REAL value.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 273

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in REAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it into
REAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 274

The examples above perform the conversion of variable VALUE, in WORD, into a REAL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.1.6.6.5 WORD

11.1.6.6.5.1 BOOL_TO_WORD

Block that performs the conversion of a BOOL value into a WORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BOOL Value in BOOL

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as BOOL and converts it into
WORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 275

Example

The examples above perform the conversion of VALUE variable, in BOOL, into a WORD value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.1.6.6.5.2 BYTE_TO_WORD

Block that performs the conversion of a BYTE value into a WORD value.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 276

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BYTE USINT SINT Value in BYTE

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as BYTE and converts it into
WORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 277

The examples above perform the conversion of variable VALUE, in BYTE, into a WORD value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.1.6.6.5.3 DWORD_TO_WORD

Block that performs the conversion of a DWORD value into a WORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as DWORD and converts it into
WORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 278

Example

The examples above convert the VALUE variable, in DWORD, into a WORD value storing the final
result in RESULT. The block ends with success and ENO output is activated. Notice that only the
sixteen least significant bits are taken into account.

11.1.6.6.5.4 REAL_TO_WORD

Block that performs the conversion of a REAL value into a WORD value.

Equipments (Devices)

WPS v2.5X | 279

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value in REAL

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as REAL and converts it into
WORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 280

The examples above convert the VALUE variable, in DWORD, into a WORD value storing the final
result in RESULT. The block ends with success and ENO output is activated. Note that the results
are truncated in decimal and only the sixteen least significant bits are taken into account.

11.1.6.7 Counter

11.1.6.7.1 CTD

Countdown block of input pulses.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

CD BOOL Pulse identif ier

LD BOOL Loads the value of PV in CV

PV WORD UINT Value of initial configuration

VAR_OUTPUT
Q BOOL Counter zeroed f lag

CV WORD UINT Current count value

VAR CTD_INST_0 CTD Instance of access to block structure

Operation

Equipments (Devices)

WPS v2.5X | 281

When this block identifies a leading edge in CD, it decrements the CV variable until it is zero. While
CV equals zero, the output Q remains at TRUE level. By detecting high-level LD, the block loads the
PV value in CV.

Block Flowchart

Operation Diagram

Equipments (Devices)

WPS v2.5X | 282

Example

The above example shows the initial conditions of routine. As CV has a value of zero, the Q output is
enabled.

The value of the PV variable was changed to 20, but not yet loaded.

Equipments (Devices)

WPS v2.5X | 283

By identifying TRUE level in LD, the block loads the PV value to CV. Since this value is greater than
zero, the Q output is disabled.

At each leading edge identified in CD, the value of COUNT is decremented until it reaches zero, when
the Q output is enabled.

11.1.6.7.2 CTU

Block for gradual count of input pulses.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

CU BOOL Pulse identif ier

R BOOL Loads the zero value in CV

PV WORD UINT Maximum count value

VAR_OUTPUT
Q BOOL Counter overrun f lag

CV WORD UINT Current count value

VAR CTU_INST_0 CTU Instance of access to block structure

Operation

When this block identifies a leading edge in CD, it increments the CV variable until it is equal to PV.
While CV equals PV, the output Q remains at TRUE level. By detecting high-level R, the block loads
the zero value in CV.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 284

Operation Diagram

Equipments (Devices)

WPS v2.5X | 285

Example

The above example shows the initial conditions of routine. Since CV has a lower value than of PV, the
Q output is disabled.

At each leading edge identified in CU, the value of CV is incremented until it reaches the PV value,
when the Q output is enabled.

Equipments (Devices)

WPS v2.5X | 286

By identifying TRUE level in R, the block loads the zero value to CV. Since this value is lower than of
PV, the Q output is disabled.

11.1.6.7.3 CTUD

Block for gradual count and countdown of input pulses.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

CU BOOL Pulse identif ier for incremental

CD BOOL Pulse identif ier for decremental

R BOOL Loads the zero value in CV

LD BOOL Loads the value of PV in CV

PV WORD UINT Reference value

VAR_OUTPUT

ENO BOOL Output enabling

QU BOOL Counter overrun f lag

QD BOOL Counter zeroed f lag

CV WORD UINT Current count value

VAR CTUD_INST_0 CTUD Instance of access to block structure

Operation

When this block has a TRUE value in EN, it acts as a CTD block and block CTU at the same time
acting on the same CV counter. That is: increments CV until it reaches PV to the leading edges in
CU and decrements CV until it reaches zero to the leading edges in CD. A positive transition in R
carries zero in CV, while a leading edge in LD loads the PV value in CV. If CV has zero value, QD
receives TRUE, and if CV has value equal to PV, QU receives TRUE.

Equipments (Devices)

WPS v2.5X | 287

The ENO value forwards to the next Ladder block the EN value.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 288

Equipments (Devices)

WPS v2.5X | 289

Operation Diagram

Example

Equipments (Devices)

WPS v2.5X | 290

The example above shows the disabled block, with all its internal variables zeroed. Although the
external controls are activated, these values are not forwarded to the instance of the block.

When activated, the block identifies the value of PRESET, loading it in PV, and identifies that the
output is at zero, enabling the QD output. When execution is completed, the ENO output is activated.

At each leading edge identified in CU, the value of CV is incremented until it reaches the PV value,
when the QU output is enabled. When execution is completed, the ENO output is activated.

At each leading edge detected in CD, the CV value is decremented. When CV is a value between
zero and PV, both QD and QU outputs are deactivated. When execution is completed, the ENO
output is activated.

Equipments (Devices)

WPS v2.5X | 291

A TRUE value in R resets CV, while a TRUE value in LD loads the value of PV to CV. As we can see,
R prevails over LD, leaving CV and enabling the QD output. When execution is completed, the ENO
output is activated.

11.1.6.8 Data Transfer

11.1.6.8.1 DEMUX

Block that creates 16 new BOOL variables from the decomposition of a WORD variable.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Word WORD UINT INT Input variable of 15 bits

VAR_OUTPUT
ENO BOOL End of operation

Bit0 – Bit15 BOOL Bit of the corresponding position of Word

Operation

Equipments (Devices)

WPS v2.5X | 292

When this block has a TRUE value in EN, it decomposes the input variable in Word 15 Boolean
values stored in Bit0 to Bit15 variables. Bit0 corresponds to the LSB (least significant bit) and Bit15
corresponds to the MSB (most significant bit).

When EN has FALSE value, output variables remain unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 293

The example above decomposes the value of MYWORD in Boolean values, which are stored in the
output variables BIT0 to Bit15. The block ends successfully and the ENO output is activated.

11.1.6.8.2 ILOAD

Block which indirectly loads the value of a variable and transfers it to Value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Group# BYTE Group w here the variable is stored

DataType# BYTE Data type of the selected variable

Address DWORD UDINT DINT Address of the global variable, as its group

VAR_OUTPUT

ENO BOOL End of operation

Value
As selected in

DataType#
Value of the selected variable

Operation

When this block has a TRUE value in EN, it loads, in Value, the of the Address variable belonging to
the Group# group, as the selected DataType#.

Equipments (Devices)

WPS v2.5X | 294

When EN has FALSE value, Value remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

The above example loads the value of the address 40 of group 2 (GLOBAL_SYSTEM%S), which
represents the status of ESC key in UINT format for the VALUE variable. The block ends with
success and ENO output is activated.

11.1.6.8.3 ILOADBOOL

Block that indirectly loads the value of a bit in a global variable address.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 295

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Group# BYTE Group w here the variable is stored

Address DWORD UDINT DINT Address of the global variable, as its group

Bit BYTE USINT SINT Position of the bit to be checked

VAR_OUTPUT
ENO BOOL End of operation

Value BOOL Value of the bit selected by the input arguments

Operation

When this block has a TRUE value in EN, it loads, in Value, the Bit contents of the Address variable
belonging to the Group# group.

When EN has FALSE value, Value remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 296

Example

The above example loads the value of bit 1 of the address 24 of group 2 (S GLOBAL_SYSTEM%),
which represents the status of ESC key for the VALUE variable. The block ends with success and
ENO output is activated.

11.1.6.8.4 ISTORE

Block that indirectly loads the Value value in a variable.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Group# BYTE Group w here the variable is stored

DataType# BYTE Data type of the selected variable

Address DWORD UDINT DINT Address of the global variable, as its group

Value

Depending on the

selection of the

DataType#

Value to be w ritten in the selected variable

VAR_OUTPUT ENO BOOL End of operation

Operation

When this block has a TRUE value in EN, it loads the Value value in the contents of the Address
variable belonging to the Group# group, as the selected DataType#.

When EN has FALSE value, Value remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Equipments (Devices)

WPS v2.5X | 297

Block Flowchart

Example

The example above stores the VALUE value in WORD format in address 444 of group 3
(GLOBAL_SYSTEM% C), which represents the index of the communication port Modbus TCP. The
block ends with success and ENO output is activated.

11.1.6.8.5 ISTOREBOOL

Block that indirectly loads the Value value in a bit in a global variable address.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 298

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Group# BYTE Group w here the variable is stored

Address DWORD UDINT DINT Address of the global variable, as its group

Bit BYTE USINT SINT Position of the bit to be modif ied

Value BOOL New value of the selected bit

VAR_OUTPUT ENO BOOL End of operation

Operation

When this block has a TRUE value in EN, it loads the Value value in the Bit contents of the Address
variable belonging to the Group# group.

When EN has FALSE value, Value remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 299

Example

The example above stores the value of VALUE in bit 7 of the address 121 in group 3
(GLOBAL_SYSTEM% C), which represents the disable command of CANopen communication. The
block ends with success and ENO output is activated.

11.1.6.8.6 MUX

Block that creates a new WORD variable from the concatenation of 16 BOOL variables.

Equipments (Devices)

WPS v2.5X | 300

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Bit0 – Bit15 BOOL Bit of the corresponding position in the new w ord

VAR_OUTPUT
ENO BOOL End of operation

Word WORD UINT INT New w ord formed from the input bits

Operation

When this block has a TRUE value in EN, it concatenates Boolean values of the input variables and
stores this value in the variable Word. Bit0 corresponds to LSB (least significant bit) and Bit15
corresponds to the MSB (most significant bit).

When EN has FALSE value, Word remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 301

Example

The above example concatenates the Boolean values of the input bits of the block to form the output
word stored in MYWORD. The block ends with success and ENO output is activated.

Equipments (Devices)

WPS v2.5X | 302

11.1.6.8.7 SEL

Block that replicates to the output the value of an input variable (Value0 or Value1) according to the
Selector selection.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Selector BOOL Variable that selects the input

Value0
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Multiplexed input number 1

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Multiplexed input number 2

VAR_OUTPUT

ENO BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Output value selected

Operation

When this block has a TRUE value in EN, it replicates to the Result variable the Value0 value if
selector is FALSE or the Value1 value if Selector is TRUE.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 303

Example

The above example uses the SELECTOR variable as multiplexing channel selector. When it is at
FALSE level, the RESULT output gets the value of VALUE0. The block ends successfully and the
ENO output is activated.

Equipments (Devices)

WPS v2.5X | 304

The above example uses the SELECTOR variable as multiplexing channel selector. When it is at
FALSE level, the RESULT output gets the value of VALUE0. The block ends successfully and the
ENO output is activated. Note that the binary pattern has been maintained even though the decimal
representation is corrupted, since DWORD does not accept negative values.

The above example uses the SELECTOR variable as multiplexing channel selector. When it is at
TRUE level, the RESULT output gets the value of VALUE1. The block ends successfully and the ENO
output is activated. Note that the binary pattern has been maintained even though the decimal
representation is corrupted, since DWORD does not accept negative values.

11.1.6.8.8 STORE

Block that performs direct storage of data from a source to a destination.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 305

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

SRC
BYTE USINT SINT WORD UINT

INT DWORD DINT DINT REAL
Data source

VAR_OUTPUT

ENO BOOL End of operation

DST
BYTE USINT SINT WORD UINT

INT DWORD DINT DINT REAL
Data destination

Operation

When this block has a TRUE value in EN, it stores the contents from SRC into DST.

NOTE!
SRC and DST must have data types of the same size.

When EN has FALSE value, DST remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 306

The example above stores the value of the variable SRC in DST. The block ends with success and
ENO output is activated.

The example above stores the value of the variable SRC in DST. The block ends with success and
ENO output is activated. Note that the binary pattern is maintained between variables of different
types.

11.1.6.8.9 USERERR

Block that generates an alarm or fault with the number programmed by the user.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

CODE WORD UINT
Error code generated

(950 - 999)

TYPE BYTE

Error type generated

(0 - Alarm)

(1 - Fault)

VAR_OUTPUT ENO BOOL Success in the generation of error

VAR USERERR_INST_0 USERERR (*) Instance of access to block structure

NOTE!
(*) USERERR_INST_0 instance must be configurated to SCA06 and LDW900.

Operation

When this block has a TRUE value in EN, it generates an alarm or equipment failure, depending on
the type defined in TYPE with CODE code.

The value of ENO informs if the generation of alarm or fault has been executed successfully.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 307

Example

The above example, when identifying TRUE level in DI1, generates a fault with the code 974 and sets
the DO1 output.

USERERR table configuration

On devices that have text-based HMI, messages can be configured through an editor. To access the
editor, right click on the USERERR block and select the "Edit USERERR Table" option.

Equipments (Devices)

WPS v2.5X | 308

The texts configured in the table will be displayed on the HMI when the block USERERR is enabled.

After editing the table, select the argument CODE of the block equal to the CODE column of the
table.

11.1.6.9 Filter

11.1.6.9.1 LOWPASS

Block that filters the input using a low pass filter of first order and inserts the result in the output.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 309

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Input REAL Input signal

Tau REAL Filter time constant

Ts# UINT Sampling time [ms]

VAR_OUTPUT
ENO BOOL Output enabling

Output REAL Filter output

VAR LOWPASS_INST_0 LOWPASS Instance of access to block structure

Operation

When this block has a TRUE value in EN, filters the input value of Input using a low pass first order
filter described by Tau and Ts#, inserting the result in Output. On the leading edge of EN, Output
receives zero.

When EN has FALSE value, Output remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 310

Example

The above example causes OUTPUT, by identifying a leading edge in EN, to display a behavior of first
order with time constant equal to Tau and the sampling time of 2 ms, in order to achieve the reference
set to INPUT. At each calculation completed successfully, the ENO output is activated.

Equipments (Devices)

WPS v2.5X | 311

11.1.6.10 Logic

11.1.6.10.1 Logic Bit

11.1.6.10.1.1 RESETBIT

Logical block used to perform reset of a specific bit in a field.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_IN_OUT Data

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable w hose bit w ill be changed

VAR_INPUT
EN BOOL Block enabling

Position BYTE USINT Position of the bit that w ill be changed

VAR_OUTPUT DONE BOOL Operation successful

Operation

This block when it has a TRUE value in EN, resets the bit indicated in Position in the Data variable
that is forwarded to the output already with its updated value.

When EN has FALSE value, Data remains unchanged.

The DONE variable receives the same EN value, except when there is an error in the reset of the bit,
then getting a FALSE value.

NOTE!
It is important to notice that Position is within the range of values of bits corresponding to variable
type in Data. For example: if Data is a BYTE, it has 8 bits, and Position must contain a value
between 0 and 7.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 312

Example

The example above resets the bit of AUX zero position, whose initial value is 200 (1100 1000, in
binary). Since this bit already had FALSE value, nothing has changed.

The example above resets the bit in position three of AUX by changing its binary value and, therefore,
its decimal representation.

The example above resets the bit in position nine of AUX. Since AUX is a variable BYTE type, it has

Equipments (Devices)

WPS v2.5X | 313

only eight bits. Thus, the example above creates a runtime error in the block and therefore the output
is not enabled.

11.1.6.10.1.2 SETBIT

Logical block used to perform the set of a specific bit in a field.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_IN_OUT Data

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable w hose bit w ill be changed

VAR_INPUT
EN BOOL Block enabling

Position BYTE USINT Position of the bit that w ill be changed

VAR_OUTPUT DONE BOOL Operation successful

Operation

This block when it has a TRUE value in EN, sets the bit indicated in Position in the Data variable that
is forwarded to the output already with its updated value.

When EN has FALSE value, Data remains unchanged.

The DONE variable receives the same EN value, except when there is an error in the set of the bit,
then getting a FALSE value.

NOTE!
It is important to notice that Position is within the range of values of bits corresponding to variable
type in Data. For example: if Data is a BYTE, it has 8 bits, and Position must contain a value
between 0 and 7.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 314

Example

The example above sets the bit of AUX zero position, whose initial value is 153 (1001 1001, in binary).
Since this bit already had TRUE value, nothing has changed.

The example above sets the bit in position three of AUX by changing its binary value and, therefore,
its decimal representation.

The example above sets the bit in position fifteen of AUX. Since AUX is a variable BYTE type, it has

Equipments (Devices)

WPS v2.5X | 315

only eight bits. Thus, the example above creates a runtime error in the block and therefore the output
is not enabled.

11.1.6.10.1.3 TESTBIT

Logical block that revolutions the value of a specific bit in a field.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

Data

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable w hose bit w ill be tested

EN BOOL Block enabling

Position BYTE USINT Position of the bit that w ill be changed

VAR_OUTPUT Q BOOL Value of the tested bit

Operation

This block when it has a TRUE value in EN, sends to the output Q the bit value indicated in Position
in the Data variable.

When EN has FALSE value, Q also receives FALSE.

NOTE!
It is important to notice that Position is within the range of values of bits corresponding to variable
type in Data. For example: if Data is a BYTE, it has 8 bits, and Position must contain a value
between 0 and 7.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 316

Example

The example above sets the bit value of zero position of AUX, whose initial value is 74 (0100 1010 in
binary) to the output Q. Since this bit has value 0, the output is disabled.

The example above sets the value of the bit of position three of AUX to the output Q. Since this bit
has value 1, the output is enabled.

The example above sets the bit value of position ten of AUX to output Q. Since AUX is a variable of
BYTE type, it has only eight bits. Thus, the example above creates a runtime error in the block and
therefore the output is disabled.

Equipments (Devices)

WPS v2.5X | 317

11.1.6.10.2 Logic Boolean

11.1.6.10.2.1 AND

Logical block that performs an boolean "and" operation between two variables, storing the result in a
third one.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

Value2

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the “and” Boolean operation of
input variables Value1 and Value2.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 318

Example

The example above performs an "and" Boolean operation between AUX and AUX2, storing the result in
AUX3.

11.1.6.10.2.2 NOT

Block that performs a logical operation of boolean "not" in a variable, storing the result in another.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 319

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Reference variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the denied Boolean value of
the Value input variable.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

The example above performs a boolean "not" operation in AUX, storing the result in AUX2.

Equipments (Devices)

WPS v2.5X | 320

11.1.6.10.2.3 OR

Logical block that performs an Boolean "or" operation between two variables, storing the result in a
third one.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

Value2

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the “or” Boolean operation of
input variables Value1 and Value2.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 321

Example

The example above performs an "or" Boolean operation between AUX and AUX2, storing the result in
AUX3.

11.1.6.10.2.4 XNOR

Logical block that performs an Boolean "not exclusive or" operation between two variables, storing the
result in a third one.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 322

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

Value2

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the “denied exclusive or”
Boolean operation of input variables Value1 and Value2.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 323

The example above performs a "denied exclusive or" Boolean operation between AUX and AUX2,
storing the result in AUX3.

11.1.6.10.2.5 XOR

Logical block that performs an Boolean "exclusive or" operation between two variables, storing the
result in a third one.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

Value2

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the “xor” Boolean operation of
input variables Value1 and Value2.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 324

Example

The example above performs a "xor" Boolean operation between AUX and AUX2, storing the result in
AUX3.

11.1.6.10.3 Logic Rotate

11.1.6.10.3.1 ROL

Block that performs a logical left rotation operation in a value passed by Value, storing the result in
Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 325

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable to undergo rotation

Shift BYTE USINT Shift index

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of logical left shifts, according to the Shift value. The most significant bits
that are being discarded are returned to the least significant bits, characterizing the rotation.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 326

Example

The above example performs a logical left shift by one position in the VALUE variable whose initial
value is -100 (1001 1100 in binary). The discarded bits on the left are reinserted on the right. The final
result (0011 1001 in binary) is stored in RESULT.

The above example performs a logical left rotation by five positions in the VALUE variable whose initial
value is 21 (0001 0101 in binary). The discarded bits on the left are reinserted on the right. The final
result (1010 0010 in binary) is stored in RESULT.

11.1.6.10.3.2 ROR

Block that performs a logical right rotation operation in a value passed by Value, storing the result in
Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 327

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable to undergo rotation

Shift BYTE USINT Shift index

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of logical right shifts, according to the Shift value. The least significant bits
that are being discarded are returned to the most significant bits, characterizing the rotation.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 328

Example

The above example performs a logic right shift by one position in the VALUE variable whose initial
value is -128 (1000 0000 in binary). The discarded bits on the right are reinserted on the left. The final
result (0100 0000 in binary) is stored in RESULT. Notice that the sign is not preserved in this
operation.

The above example performs a logical right rotation by one position in the VALUE variable whose
initial value is -127 (1000 0001 in binary). The discarded bits on the right are reinserted on the left. The
final result (1100 0000 in binary) is stored in RESULT.

11.1.6.10.4 Logic Shift

11.1.6.10.4.1 ASHL

Block that performs a binary left shift operation in a value passed by Value, storing the result in
Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 329

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value SINT INT DINT Variable to undergo shift

Shift BYTE USINT Shift index

VAR_OUTPUT
ENO BOOL End of operation

Result SINT INT DINT Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of arithmetic left shifts, according to the Shift value.

NOTE!
All arithmetic shifts implemented maintain the sign of the variable.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 330

Description of exemple.

Description of exemple.

11.1.6.10.4.2 ASHR

Block that performs arithmetic left shift operation in a value passed by Value, storing the result in
Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value SINT INT DINT Variable to undergo shift

Shift BYTE USINT Shift index

VAR_OUTPUT
ENO BOOL End of operation

Result SINT INT DINT Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of arithmetic right shifts, according to the Shift value.

Equipments (Devices)

WPS v2.5X | 331

NOTE!
All arithmetic shifts implemented maintain the sign of the variable.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

The above example performs an arithmetic right shift by three positions in the VALUE variable whose
initial value is 52 (0011 0100 in binary). The bits on the right are being discarded, and on the left new
zeros are inserted. The final result (0000 0110 in binary) is stored in RESULT.

Equipments (Devices)

WPS v2.5X | 332

The above example performs an arithmetic right shift by two positions in the VALUE variable whose
initial value is -79 (1011 0001 in binary). The bits on the right will be discarded and new ones on the
left are inserted, since the arithmetic right shifts preserve the sign of the variable. The final result
(1111 0110 in binary) is stored in RESULT.

The above example performs an arithmetic right shift by thirteen positions in the VALUE variable
whose initial value is -128 (1000 0000 in binary). The bits on the right are being discarded, and on the
left new ones are inserted. The final result (1111 1111 in binary) is stored in RESULT.

11.1.6.10.4.3 SHL

Block that performs a binary logical left shift operation in a value passed by Value, storing the result
in Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 333

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable to undergo shift

Shift BYTE USINT Shift index

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of logical shifts left, according to the Shift value.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 334

The above example performs a logical right shift by four positions in the VALUE variable whose initial
value is 56 (0011 1000 in binary). The bits on the left are being discarded, and on the left new zeros
are inserted. The final result (0011 1000 0000 in binary) is stored in RESULT.

The above example performs a logical right shift by four positions in the VALUE variable whose initial
value is -56 (1100 1000 in binary). The bits on the left are being discarded, and on the left new zeros
are inserted. The final result (1100 1000 0000 in binary) is stored in RESULT. Since RESULT is SINT
type, it only accepts the first eight bits (1000 0000).

11.1.6.10.4.4 SHR

Block that performs a binary logical right shift operation in a value passed by Value, storing the result
in Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 335

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable to undergo shift

Shift BYTE USINT Shift index

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of logical shifts right, according to the Shift value.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 336

The above example performs a logical right shift by two positions in the VALUE variable whose initial
value is 124 (0111 1100 in binary). The bits on the right are being discarded, and on the left new zeros
are inserted. The final result (0001 1111 in binary) is stored in RESULT.

The above example performs a logical right shift by three positions in the VALUE variable whose initial
value is -98 (1001 1110 in binary). The bits on the right are being discarded, and on the left new zeros
are inserted. The final result (0001 0011 in binary) is stored in RESULT.

11.1.6.11 Math

11.1.6.11.1 Math Basic

11.1.6.11.1.1 ABS

Block that calculates the Value module, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Reference variable for the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the absolute value of the

Equipments (Devices)

WPS v2.5X | 337

Value variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not
set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the absolute value of the VALUE variable whose initial value is -45,
storing the final result, 45, in RESULT.

The above example calculates the absolute value of the VALUE variable whose initial value is -45. The
final result, 128, cannot be stored in RESULT, because it is outside the limits of accepted values by
SINT type. Therefore, RESULT remains unchanged and the output is disabled.

Equipments (Devices)

WPS v2.5X | 338

11.1.6.11.1.2 ADD

Block that calculates the sum of the values of Value1 and Value2, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First addend of the operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second addend of the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the sum of Value1 and Value2
variables. If no errors, the Done variable is set. If there is any error in the operation, Done is not set,
staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 339

Example

The above example calculates the sum of VALUE 1 and VALUE2 variables, storing the final result in
RESULT.

The above example calculates the sum of VALUE 1 and VALUE2 variables, storing the final result in
RESULT. Notice that the block accepts arguments of both signs.

Equipments (Devices)

WPS v2.5X | 340

The above example calculates the sum of VALUE1 and VALUE2 variables. The final result -170
cannot be stored in RESULT, because it is outside the limits of accepted values by SINT type.
Therefore, RESULT remains unchanged and the output is disabled.

11.1.6.11.1.3 DIV

Block that calculates the division of the values of Value1 and Value2, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Dividend of the operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Divisor of the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the division of Value1 and
Value2 variables. The value stored will be the exact division if Result is REAL, or, in other cases, only
the quotient. If no errors, the Done variable is set. If there is any error in the operation, Done is not
set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 341

Example

The above example calculates the division of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Since RESULT is SINT type, only the quotient is stored in it.

The above example calculates the division of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Since RESULT is of REAL type, the exact value of the division is stored in it.

Equipments (Devices)

WPS v2.5X | 342

The above example calculates the division of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Since RESULT is SINT type, only the quotient is stored in it. Notice that the block
accepts arguments of both signs.

The above example calculates the division of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Since VALUE2 is zero, the block generates a runtime error, RESULT remains unchanged
and the output is disabled.

11.1.6.11.1.4 MOD

Block that calculates the remainder of the values of Value1 and Value2, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT
Dividend of the operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT
Divisor of the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT

Variable that stores the result of the

operation

Operation

Equipments (Devices)

WPS v2.5X | 343

When this block has a TRUE value in EN, it sends to the Result output the remainder of Value1 and
Value2 variables. If no errors, the Done variable is set. If there is any error in the operation, Done is
not set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the remainder of VALUE 1 and VALUE2 variables, storing the final
result in RESULT.

Equipments (Devices)

WPS v2.5X | 344

The above example calculates the remainder of VALUE 1 and VALUE2 variables, storing the final
result in RESULT. Notice that the block accepts arguments of both signs.

The above example calculates the remainder of VALUE 1 and VALUE2 variables, storing the final
result in RESULT. Since VALUE2 is zero, the block generates a runtime error, RESULT remains
unchanged and the output is disabled.

11.1.6.11.1.5 MUL

Block that calculates the multiplication of the values of Value1 and Value2, storing the result in
Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First factor of the operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second factor of the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

Equipments (Devices)

WPS v2.5X | 345

When this block has a TRUE value in EN, it sends to the Result output the multiplication of Value1
and Value2 variables. If no errors, the Done variable is set. If there is any error in the operation, Done
is not set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the product of VALUE 1 and VALUE2 variables, storing the final result
in RESULT.

Equipments (Devices)

WPS v2.5X | 346

The above example calculates the product of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Notice that the block accepts arguments of both signs.

The above example calculates the product of VALUE1 and VALUE2 variables. The final result 224
cannot be stored in RESULT, because it is outside the limits of accepted values by SINT type.
Therefore, RESULT remains unchanged and the output is disabled.

11.1.6.11.1.6 NEG

Block that calculates the opposite (i.e., the product with -1) of a value passed by Value, storing the
result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Reference variable for the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the opposite of the Value
variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not set,
staying in FALSE status, while Result remains with its value unchanged.

Equipments (Devices)

WPS v2.5X | 347

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the opposite of the VALUE variable whose initial value is 21, storing
the final result, -21, in RESULT.

The above example calculates the opposite of the VALUE variable whose initial value is -56, storing
the final result, 56, in RESULT.

Equipments (Devices)

WPS v2.5X | 348

]

The above example calculates the opposite of the VALUE variable whose initial value is -128. The final
result, 128, cannot be stored in RESULT, because it is outside the limits of accepted values by SINT
type. Therefore, RESULT remains unchanged and the output is disabled.

11.1.6.11.1.7 SUB

Block that calculates the subtraction between the Value1 and Value2 values, storing the result in
Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Minuend of operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Subtrahend of operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the subtraction of Value1 and
Value2 variables. If no errors, the Done variable is set. If there is any error in the operation, Done is
not set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 349

Example

The above example calculates the subtraction of VALUE 1 and VALUE2 variables, storing the final
result in RESULT.

The above example calculates the subtraction of VALUE 1 and VALUE2 variables, storing the final
result in RESULT. Notice that the block accepts arguments of both signs.

Equipments (Devices)

WPS v2.5X | 350

The above example calculates the subtraction of VALUE1 and VALUE2 variables. The final result 141
cannot be stored in RESULT, because it is outside the limits of accepted values by SINT type.
Therefore, RESULT remains unchanged and the output is disabled.

11.1.6.11.2 Math Extended

11.1.6.11.2.1 ALOG10

Block that calculates the antilogarithm (exponent with base 10) of the Value value, storing the result
in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the antilogarithm of the Value
variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not set,
staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 351

Example

The above example calculates the antilogarithm of the VALUE variable, storing the final result in
RESULT. The block ends with success and Done output is activated.

The above example calculates the antilogarithm of the VALUE variable, storing the final result in
RESULT. The indicated value is the minimum input value for which the block revolutions a nonzero
result. The block ends with success and Done output is activated.

The above example calculates the antilogarithm of the VALUE variable, storing the final result in

Equipments (Devices)

WPS v2.5X | 352

RESULT. Below the minimum values cause the block to return a null value. The block ends with
success and Done output is activated.

The above example calculates the antilogarithm of the VALUE variable, storing the final result in
RESULT. The indicated value is the maximum input value for which the block revolutions a valid result.
The block ends with success and Done output is activated.

The above example calculates the antilogarithm of the VALUE variable, storing the final result in
RESULT. Values higher than the maximum cause the block to generate an error, the RESULT output
remains unchanged and Done output is disabled.

11.1.6.11.2.2 EXP

Block that calculates the exponential of the Euler number "and" raised to the value of Value, storing
the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the exponent of the Euler
number "and" raised to the Value variable. If no errors, the Done variable is set. If there is any error in
the operation, Done is not set, staying in FALSE status, while Result remains with its value
unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Equipments (Devices)

WPS v2.5X | 353

Block Flowchart

Example

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
The block ends with success and Done output is activated.

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
The indicated value is the minimum input value for which the block revolutions a nonzero result. The
block ends with success and Done output is activated.

Equipments (Devices)

WPS v2.5X | 354

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
Values below the minimum cause the block to return to a null value. The block ends with success
and Done output is activated.

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
The indicated value is the maximum input value for which the block revolutions a valid result. The
block ends with success and Done output is activated.

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
Values higher than the maximum cause the block to generate an error, the RESULT output remains
unchanged and Done output is disabled.

11.1.6.11.2.3 LN

Block that calculates the natural logarithm of the Value value, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the natural logarithm of the
Value variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not
set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Equipments (Devices)

WPS v2.5X | 355

Block Flowchart

Example

The above example calculates the natural logarithm of the VALUE variable, storing the final result in
RESULT. The block ends with success and Done output is activated.

The above example calculates the natural logarithm of the VALUE variable, storing the final result in
RESULT. The block generates a runtime error, since VALUE has value zero, and Done output is
disabled.

Equipments (Devices)

WPS v2.5X | 356

11.1.6.11.2.4 LOG10

Block that calculates the common logarithm (base 10) of the Value value, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the common logarithm of the
Value variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not
set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 357

Example

The above example calculates the common logarithm of the VALUE variable, storing the final result in
RESULT. The block ends with success and Done output is activated.

The above example calculates the common logarithm of the VALUE variable, storing the final result in
RESULT. The block generates a runtime error, since VALUE has negative value, and Done output is
disabled.

11.1.6.11.2.5 POW

Block that calculates the value of Value raised to the exponent Power, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value REAL Base of the operation

Power REAL Exponent of the operation

VAR_OUTPUT

Done BOOL End of operation

Result REAL
Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of Value raised to
the exponent Power. If no errors, the Done variable is set. If there is any error in the operation, Done
is not set, staying in FALSE status, while Result remains with its value unchanged.

Equipments (Devices)

WPS v2.5X | 358

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the value of VALUE raised to the POWER variable, storing the final
result in RESULT. The block ends with success and Done output is activated.

The above example calculates the value of VALUE raised to the POWER variable, storing the final
result in RESULT. The block ends with success and Done output is activated.

Equipments (Devices)

WPS v2.5X | 359

The above example calculates the value of VALUE raised to the POWER variable, storing the final
result in RESULT. Since the result is higher than the maximum supported by REAL type, the block
generates an error and Done output is disabled.

11.1.6.11.2.6 ROUND

Block that rounds the value of Value, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT

Done BOOL End of operation

Result REAL
Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the rounded value of Value. If
no errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Compatibility

Device Version

PLC300 2.10 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 360

Example

The above example rounds the value of the VALUE variable, storing the final result in RESULT.
Decimals less than 0.5 are discarded. The block ends with success and Done output is activated.

The above example rounds the value of the VALUE variable, storing the final result in RESULT.
Decimals greater than or equal to 0.5 promote unity value immediately above. The block ends with
success and Done output is activated.

11.1.6.11.2.7 SQRT

Block that calculates the square root value of Value, storing the result in Result.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 361

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the square root value of
Value. If no errors, the Done variable is set. If there is any error in the operation, Done is not set,
staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 362

The above example calculates the square root value of the VALUE variable, storing the final result in
RESULT. The block ends with success and Done output is activated.

The above example calculates the square root value of the VALUE variable, storing the final result in
RESULT. The block generates a runtime error, since VALUE has negative value, and Done output is
disabled.

11.1.6.11.2.8 TRUNC

Block that truncates the value of Value, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT

Done BOOL End of operation

Result REAL
Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the truncated value of Value. If
no errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Compatibility

Equipments (Devices)

WPS v2.5X | 363

Device Version

PLC300 2.10 or higher

SCA06 2.00 or higher

Block Flowchart

Example

The above example truncates the value of the VALUE variable, storing the final result in RESULT.
Decimals are discarded. The block ends with success and Done output is activated.

11.1.6.11.3 Math Trigonometry

11.1.6.11.3.1 ACOS

Block that calculates the arccosine of Value, storing the result in Angle.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 364

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value of cosine

VAR_OUTPUT
Done BOOL End of operation

Angle REAL Value of the angle w hose cosine is equal to Value (in radians)

Operation

When this block has a TRUE value in EN, it sends to the Angle output the arccosine of Value. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Angle remains with its value unchanged.

When EN has FALSE value, Angle remains unchanged and Done remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 365

The above example calculates the arc, in radians, whose cosine is the VALUE variable, storing the
final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the arc, in radians, whose cosine is the VALUE variable, storing the
final result in RESULT. The block generates a runtime error, since VALUE has value inferior to 1, and
Done output is disabled.

11.1.6.11.3.2 ASIN

Block that calculates the arcsine of Value, storing the result in Angle.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value of sine

VAR_OUTPUT
Done BOOL End of operation

Angle REAL Value of the angle w hose sine is equal to Value (in radians)

Operation

When this block has a TRUE value in EN, it sends to the Angle output the arcsine of Value. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Angle remains with its value unchanged.

When EN has FALSE value, Angle remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 366

Example

The above example calculates the arc, in radians, whose sine is the VALUE variable, storing the final
result in RESULT. The block ends with success and Done output is activated.

The above example calculates the arc, in radians, whose sine is the VALUE variable, storing the final
result in RESULT. The block generates a runtime error, since VALUE has value superior to 1, and
Done output is disabled.

Equipments (Devices)

WPS v2.5X | 367

11.1.6.11.3.3 ATAN

Block that calculates the arctangent of Value, storing the result in Angle.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value of tangent

VAR_OUTPUT
Done BOOL End of operation

Angle REAL Value of the angle w hose tangent is equal to Value (in radians)

Operation

When this block has a TRUE value in EN, it sends to the Angle output the arctangent of Value. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Angle remains with its value unchanged.

When EN has FALSE value, Angle remains unchanged and Done remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 368

The above example calculates the arc, in radians, whose tangent is the VALUE variable, storing the
final result in RESULT. The arc, for positive values, is always in the first quadrant. The block ends with
success and Done output is activated.

The above example calculates the arc, in radians, whose tangent is the VALUE variable, storing the
final result in RESULT. The arc, for negative values, is always in the fourth quadrant. The block ends
with success and Done output is activated.

11.1.6.11.3.4 ATAN2

Block that calculates the arctangent of Y/X, storing the result in Angle.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

X REAL Parameter X of the function

Y REAL Parameter Y of the function

VAR_OUTPUT
Done BOOL End of operation

Angle REAL Value of the angle w hose tangent is equal to (Y/X) (in radians)

Operation

When this block has a TRUE value in EN, it sends to the Angle output the arctangent of Y/X. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Angle remains with its value unchanged.

When EN has FALSE value, Angle remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 369

Example

The above example calculates the arc, in radians, whose tangent is the Y/X variable, storing the final
result in RESULT. The arc, for positive values of X and Y, is always in the first quadrant. The block
ends with success and Done output is activated.

The above example calculates the arc, in radians, whose tangent is the Y/X variable, storing the final

Equipments (Devices)

WPS v2.5X | 370

result in RESULT. The arc, for negative values of X and positive values of Y, is always in the second
quadrant. The block ends with success and Done output is activated.

The above example calculates the arc, in radians, whose tangent is the Y/X variable, storing the final
result in RESULT. The arc, for negative values of X and Y, is always in the third quadrant. The block
ends with success and Done output is activated.

The above example calculates the arc, in radians, whose tangent is the Y/X variable, storing the final
result in RESULT. The arc, for positive values of X and negative values of Y, is always in the fourth
quadrant. The block ends with success and Done output is activated.

11.1.6.11.3.5 COS

Block that calculates the cosine of Angle, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Angle REAL Angle (in radians)

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the cosine of Angle. If no

Equipments (Devices)

WPS v2.5X | 371

errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the cosine of the VALUE variable, interpreted in radians, storing the
final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the cosine of the VALUE variable, interpreted in radians, storing the
final result in RESULT. The block ends with success and Done output is activated. Notice that the
block accepts negative input values and greater than one turn.

Equipments (Devices)

WPS v2.5X | 372

11.1.6.11.3.6 SIN

Block that calculates the sine of Angle, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Angle REAL Angle (in radians)

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the sine of Angle. If no errors,
the Done variable is set. If there is any error in the operation, Done is not set, staying in FALSE
status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 373

The above example calculates the sine of the VALUE variable, interpreted in radians, storing the final
result in RESULT. The block ends with success and Done output is activated.

The above example calculates the sine of the VALUE variable, interpreted in radians, storing the final
result in RESULT. The block ends with success and Done output is activated. Notice that the block
accepts negative input values.

The above example calculates the sine of the VALUE variable, interpreted in radians, storing the final
result in RESULT. The block ends with success and Done output is activated. Notice that the block
accepts values greater than one full turn.

11.1.6.11.3.7 TAN

Block that calculates the tangent of Angle, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Angle REAL Angle (in radians)

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

Equipments (Devices)

WPS v2.5X | 374

When this block has a TRUE value in EN, it sends to the Result output the tangent of Angle. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the tangent of the VALUE variable, interpreted in radians, storing the
final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the tangent of the VALUE variable, interpreted in radians, storing the
final result in RESULT. The block ends with success and Done output is activated. Notice that the
block accepts negative input values and greater than one turn.

Equipments (Devices)

WPS v2.5X | 375

11.1.6.11.4 Math Util

11.1.6.11.4.1 MAX

Block that compares the values of Value1 and Value2 and stores the highest of them in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Highest of the values compared

Operation

When this block has a TRUE value in EN, it sends to the Result output the highest value in the
comparison between Value1 and Value2. If no errors, the Done variable is set. If there is any error in
the operation, Done is not set, staying in FALSE status, while Result remains with its value
unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 376

Example

The above example calculates the maximum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the maximum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. The block ends with success and Done output is activated. Notice that the
types of the input variables can be different without causing execution problems.

Equipments (Devices)

WPS v2.5X | 377

The above example calculates the maximum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. Since the result is higher than the maximum supported by SINT type, the
block generates an error and Done output is disabled.

11.1.6.11.4.2 MIN

Block that compares the values of Value1 and Value2 and stores the lowest of them in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Low est of the values compared

Operation

When this block has a TRUE value in EN, it sends to the Result output the lowest value in the
comparison between Value1 and Value2. If no errors, the Done variable is set. If there is any error in
the operation, Done is not set, staying in FALSE status, while Result remains with its value
unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 378

Example

The above example calculates the minimum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the minimum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. The block ends with success and Done output is activated. Notice that the
types of the input variables can be different without causing execution problems.

Equipments (Devices)

WPS v2.5X | 379

The above example calculates the minimum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. Since the result is lower than the minimum supported by SINT type, the
block generates an error and Done output is disabled.

11.1.6.11.4.3 SAT

Block that performs a routine for saturation of the value found in Value in accordance with the limits
for Minimum and Maximum, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Reference value

Minimum
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Inferior saturation value

Maximum
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Superior saturation value

VAR_OUTPUT

Q BOOL
Indicator that there w as saturation in the

process

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Result of operation

Operation

When this block has a TRUE value in EN, it performs a comparison between Value and Minimum and
Maximum. If Value is in the range between Minimum and Maximum, Result receives the value of
Value and Q remains FALSE. If Value is higher than Maximum, Result receives Maximum and Q
receives TRUE. If Value is lower than Minimum, Result receives Minimum and Q receives TRUE. If
there is any error in the operation, Q is not set, staying in FALSE status, while Result remains with
its value unchanged.

Equipments (Devices)

WPS v2.5X | 380

When EN has FALSE value, Result remains unchanged and Q remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 381

The above example passes the VALUE value to RESULT, since it is not lower than MINIMUM or
higher than MAXIMUM. The block ends successfully and the Q output is disabled, since there was no
saturation.

The above example passes the MAXIMUM to RESULT, since VALUE is higher than MAXIMUM. The
block ends successfully and the Q output is activated, since there was saturation.

The above example passes the MINIMUM to RESULT, since VALUE is lower than MINIMUM. The
block ends successfully and the Q output is activated, since there was saturation.

Equipments (Devices)

WPS v2.5X | 382

The above example passes the MAXIMUM value to RESULT, since VALUE is higher than MAXIMUM.
The block ends successfully and the Q output is activated, since there was saturation.

11.1.6.12 Module

11.1.6.12.1 USERFB

Block that performs a subroutine programmed by the user.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

INPUT
According to user

programming
Block inputs

VAR_OUTPUT

ENO BOOL End of operation

OUTPUT
According to user

programming
Block outputs

VAR_IN_OUT IN_OUT
According to user

programming
Block inputs/outputs

VAR MYUSERFB_INST_0 MYUSERFB Instance of access to block structure

Operation

When this block has a TRUE value in EN, it updates the values of internal fields with the input
variables, performs the Ladder routine programmed by the user and updates the values of the outputs
after completing routine.

When EN has FALSE value, outputs remain unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Equipments (Devices)

WPS v2.5X | 383

NOTE!
Refer to section Working with USERFBs for further information.

Compatibility

Device Version

PLC300 1.50 or higher

SCA06 2.00 or higher

Block Flowchart

11.1.6.13 Motion Control

11.1.6.13.1 MW_RefVelocity

This block sends speed reference to drive.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 384

Block Structure

Variable Type Name Data Type Description

VAR_INPUT EN BOOL Block enabling

Velocity
DINT INT

REAL
Sets speed reference to drive if block is enabled

VelocityUnit

0 = 13Bits

1 = RPM

2 = HZ(x10)

Sets the speed unit:

13 Bits – Sends the speed value in 13 bits;

RPM – Sends the speed value in RPM;

HZ – Sends the speed value in Hz (x10).

RunAutomatic
0 = FALSE

1 = TRUE

Define if block w ill run the Run/Stop (CFW_CMD_RUN_STOP)

w hen it is enabled:

FALSE – Do not send Run/Stop command w ith block enabling

(it is necessary to use the marker CFW_CMD_RUN_STOP in

ladder's logic to send the Run/Stop command);

TRUE – Send Run command w ith block enabling and Stop

command w ith block disabling.

VAR_OUTPUT ENO BOOL

End of operation. Conditions for ENO = 1

Does not exist another active block

MW_RefVelocity;

Drive is enabled and stop mode set

“Stopping by inertia”.

Operation

When this block has a “0” value in EN, it does not execute and ENO output is zero.

RunAutomatic = TRUE

When this block has a “1” value in EN input, the drive is general enabled, no other motion block is
active, the Run/Stop command goes to "1", the speed reference value is send to drive and the ENO
output is set to “1”.
If EN input has a "0" value, and this block is active, the Run/Stop command is set to "0" and ENO
output goes to "0".

RunAutomatic = FALSE

When this block has a “1” value in EN input, the drive is general enabled, the Run/Stop command is
set to "1", no other motion block is active, the speed reference value is send to drive and the ENO
output is set to “1”.
If EN input has a "0" value and this block is active, ENO output is set to "0".

Equipments (Devices)

WPS v2.5X | 385

NOTE!

Check the source of speed reference and command Run/Stop for correct operation of this
block

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 386

The above example shows the MW_RefVelocity block, set to Hz and the RunAutomatic command in
TRUE, if drive is general enabled and the block is enabled, the speed reference is changed.

The above example shows the MW_RefVelocity block, set to Hz and RunAutomatic command in
FALSE, if drive is general enabled, it is necessary the Run command. So, when the block be enabled,
the speed reference would be changed.

11.1.6.14 Timer

11.1.6.14.1 TON

Timer block that, when energized, enables the output after a delay set by PT.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 387

Variable Type Name Data Type Description

VAR_INPUT

IN BOOL Block enabling

PT
WORD UINT

DWORD UDINT
Delay of output drive

TIMEBASE WORD Time base for PT and ET

VAR_OUTPUT

Q BOOL Block output

ET
WORD UINT

DWORD UDINT
Counter elapsed time

VAR TON_INST_0 TON Instance of access to block structure

NOTE!
In CFW300, the PT e ET fields can only be WORD ou UINT type.

Operation

While the IN input is FALSE, the Q output is FALSE and ET also receives the value zero.
On the edge positive transition in IN, counting is triggered and ET is incremented according to
TIMEBASE. When ET equals PT, the Q output goes to state TRUE until IN revolutions to FALSE.

Compatibility

Device Version

PLC300 1.50 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 388

Operation Diagram

Equipments (Devices)

WPS v2.5X | 389

Example

The above example shows the initial conditions of the block and of the routine variables.

When activated the IN input, counting is triggered. Since ET equals PT, the Q output is enabled.

Note that a change in PRESET variable is not forwarded to the PT field while the IN entry remains
enabled.

Equipments (Devices)

WPS v2.5X | 390

Disabling the IN input, the value of PT is updated and the Q output is disabled. When activating it
again, counting is triggered.

Disabling the IN input, the value of ET remains saved.

Enabling the IN input, the value of ET is reset and counting is triggered.

When ET reaches the value PT, the Q is output enabled and remains so while IN is at TRUE level.

11.1.6.14.2 TOF

Timer block that, when energized, disables the output after a delay set by PT.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 391

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

IN BOOL Block enabling

PT
WORD UINT

DWORD UDINT
Delay of output deactivating

TIMEBASE WORD Time base for PT and ET

VAR_OUTPUT

Q BOOL Block output

ET
WORD UINT

DWORD UDINT
Counter elapsed time

VAR TOF_INST_0 TOF Instance of access to block structure

NOTE!
In CFW300, the PT e ET fields can only be WORD ou UINT type.

Operation

While the IN input is TRUE, the Q output is also TRUE and ET also receives the value zero.
On the negative transition edge in IN, counting is triggered and ET is incremented according to
TIMEBASE. When ET equals PT, the Q output goes to state FALSE until IN revolutions to FALSE.

Compatibility

Device Version

PLC300 1.50 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 392

Operation Diagram

Equipments (Devices)

WPS v2.5X | 393

Example

The above example disables the DO1 output to identify a low level in DI1 for 12 seconds, remaining
disabled until DI1 again be TRUE.

11.1.6.14.3 TP

Timer block that, when identifies it is energized, enables the output after a delay set by PT.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 394

Variable Type Name Data Type Description

VAR_INPUT

IN BOOL Block enabling

PT
WORD UINT

DWORD UDINT
Time w hile the output is enabled

TIMEBASE WORD Time base for PT and ET

VAR_OUTPUT

Q BOOL Block output

ET
WORD UINT

DWORD UDINT
Counter elapsed time

VAR TP_INST_0 TP Instance of access to block structure

NOTE!
In CFW300, the PT e ET fields can only be WORD ou UINT type.

Operation

On the edge positive transition in IN, Q receives TRUE value, counting is triggered and ET is
incremented according to TIMEBASE. When ET equals PT, the Q output goes to state FALSE until
IN revolutions to FALSE. At that moment, if IN is at TRUE level, nothing happens. On the edge
positive transition in IN, ET is automatically reset.

Compatibility

Device Version

PLC300 1.50 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 395

Operation Diagram

Equipments (Devices)

WPS v2.5X | 396

Example

The above example enables the DO1 output for six seconds at each DI1 positive transition.

11.1.6.15 Structures

Structure is a data grouping used to define a recipe or an object.

In the Ladder program, it is possible to create variables of the structure type and use them in the blocks. To
access the internal members of the structure, the '.' is used followed by its respective member.

Creating a structure

1. With the right button of the mouse on the folder Structure, click on New file.

Equipments (Devices)

WPS v2.5X | 397

Figure 1: Creating a structure

2. Define the file name and press the Next button.

Figure 2: Defining the structure name

3. Configure the structure using the buttons presented in the figure below.

Equipments (Devices)

WPS v2.5X | 398

Figure 3: Editing the Structure

4. After finishing the edition of the structure, click on the button Finish.

Figure 4: Structure created in the project

Equipments (Devices)

WPS v2.5X | 399

Editing a structure

Just double click on the desired structure, as shown in figure 4, and a window will open as shown in figure 3,
allowing to insert new data, erase or move the position of the data.

11.1.7 Communication

11.1.7.1 Force I/O

Overview

The force inputs and outputs window is used for the values of the digital and analog inputs to be read by the
program, by values manipulated by the user, regardless their physical state. It also allows the manipulation of
the physical states of the digital and analog outputs by the user independently of the values calculated by the
program.
In order to force the device inputs and outputs, it is necessary that the online monitoring be active and the
option Run cyclically be enabled. The data are sent to the device every 2 seconds.
The values can be edited with the device disconnected. The configurations are stored in the resources and
recorded whenever the main resource selection is changed.
The data displayed on the force I/O window contain the values belonging to the resource (and configuration)
selected as main.

The force I/O window is open trough the menu Online > Force I/O:

Toolbar

The toolbar of the force window has the options to run cyclically, upload the device force configuration, enable

Equipments (Devices)

WPS v2.5X | 400

all and disable all:

 Run cyclically: Sends the user's configurations to the device and updates the state of the inputs and
outputs in a cyclic way.

 Upload configuration: Allows the current configuration of the device to be read. For this option to be
enabled, it is necessary that the online monitoring be active and the option run cyclically be disabled.

 Enable all: Enables the force I/O of all of the inputs and outputs of the device.

 Disable all: Disables the force I/O of all of the inputs and outputs of the device.

Input and Output commands

For each digital and analog input and output there is a selection box linked to enable the force, a status field
and an edition field.

Digital:

1. Number of the digital inputs/output
2. Enable/disable Force I/O
3. Current status of the I/O: It has three statuses: 1. light green LED: activated; 2. dark green LED:

deactivated; 3. gray LED: the value is not being read.
4. Enable/disable the input/output

Analog:

1. Number of the analog input/output
2. Enable/disable Force I/O
3. Current value of the input/output
4. Value of the input/output configured by the user

NOTE!
The analog signal scale has 15 bits plus 1 bit for signal, except for SSW900 which it has only 10
unsigned bits.

11.2 CFW300

11.2.1 Description

The CFW300 frequency inverter is a high-performance product which allows speed control of three-phase
induction motors. This product provides the user with the options of vector (VVW) or scalar (V/f) control, both

Equipments (Devices)

WPS v2.5X | 401

programmable according to the application.

The scalar mode (V/f) is recommended for simpler applications, such as the activation of most pumps and
fans. In such cases it is possible to reduce the losses in the motor and the inverter using the "V/f Quadratic",
which results in energy savings. The V/f mode is used when more than a motor is activated by an inverter
simultaneously (multimotor applications). In the vector mode (VVW), the operation is optimized for the motor
in use, obtaining a better performance in terms of speed regulation.

The frequency inverter CFW300 also has functions of PLC (Programmable Logic Controller) by means of the
SoftPLC (integrated) feature. It has two slots for simultaneous connection of the accessories: Slot 1 -
Communication accessory or external HMI and Slot 2 - Input and output (I/O) expansion accessory.

Refer to the user's manual of the CFW300 for further details about the product.

11.2.2 System Markers

The following variables contained in the GLOBAL_SYSTEM group of the variables table, have the fixed tag.
The tag of system markers were divided into groups and subgroups, where:

Groups:
CFW: reading and writing variables of the CFW300 frequency inverter.

Subgroups:
STS: reading variable (status);
CMD: writing variable (command).

Reading System Markers (Status)

Reading - Function Modbus 02 "Read Discrete Inputs"

Address Bit Modbus Tag Description

Ladder

%SB6000 0 0 SYS_FREQ_2HZ Oscillator w ith frequency of 2 Hz

%SB6000 1 1 SYS_PULSE_1SCAN Pulse during the f irst scan cycle

%SB6000 2 2 SYS_FALSE Alw ays in 0

%SB6000 3 3 SYS_TRUE Alw ays in 1

Logical Status

%SB6002 1 17 CFW_STS_RUN_COMMAND
The run motor command is active in the

inverter

%SB6002 2 18 CFW_STS_FIRE_MODE_ACTIVE Fire Mode Function is active

%SB6002 5 21 CFW_STS_SEC_RAMP_ACTIVE
The inverter is configured to use the f irst

or second ramp values (0-First, 1-

Second)

%SB6002 6 22 CFW_STS_CONFIG_MODE The inverter is in the configuration mode

%SB6002 7 23 CFW_STS_ALARM_ACTIVE The inverter is in alarm condition

%SB6003 0 24 CFW_STS_MOTOR_RUNNING The inverter is running the motor at the

Equipments (Devices)

WPS v2.5X | 402

speed reference, or executing either the

acceleration or the deceleration ramp

%SB6003 1 25 CFW_STS_GENERAL_ENABLED
General Enable is active and the inverter

is ready to run the motor

%SB6003 2 26 CFW_STS_FWD_REV_DIRECTION
The motor is running in the reverse or

forw ard direction (0-Reverse, 1-

Forw ard)

%SB6003 3 27 CFW_STS_JOG_ACTIVE The JOG function is active

%SB6003 4 28 CFW_STS_LOC_REM_MODE
The inverter is in local or remote mode (0-

Local, 1-Remote)

%SB6003 5 29 CFW_STS_UNDERVOLTAGE The inverter is in undervoltage

%SB6003 7 31 CFW_STS_FAULT_ACTIVE The inverter has detected a fault

%SB6004 0 32 CFW_STS_AI1_BROKEN_CABLE
It indicates that the signal of analog input

AI1 in 4 to 20 mA or 20 to 4 mA is below

2 mA

%SB6004 1 33 CFW_STS_AI2_BROKEN_CABLE
It indicates that the signal of analog input

AI2 in 4 to 20 mA or 20 to 4 mA is below

2 mA

HMI keys

%SB6006 0 48 CFW_STS_KEY_START_STOP START/STOP key (I)/(0) pressed

%SB6006 2 50 CFW_STS_KEY_UP UP key pressed

%SB6006 3 51 CFW_STS_KEY_DOWN DOWN key pressed

Infrared Remote Control (IRC 1)

%SB6010 0 80 CFW_STS_IRC_1_KEY_ON Start/Stop Motor key pressed

%SB6010 1 81 CFW_STS_IRC_1_KEY_DOWN Brow se Dow nw ards key pressed

%SB6010 2 82 CFW_STS_IRC_1_KEY_UP Brow se Upw ards key pressed

%SB6010 3 83 CFW_STS_IRC_1_KEY_CHANGE

Commute view key pressed. This key

allow s commute view betw een tw o

parameters (values) defined by

parameters P842 and P843

%SB6010 4 84 CFW_STS_IRC_1_KEY_P Confirm/Program key pressed

%SB6010 5 85 CFW_STS_IRC_1_KEY_SFK1 Special Function key 1 pressed

%SB6010 6 86 CFW_STS_IRC_1_KEY_SFK2 Special Function key 2 pressed

%SB6010 7 87 CFW_STS_IRC_1_KEY_SFK3 Special Function key 3 pressed

Infrared Remote Control (IRC 2)

%SB6012 0 96 CFW_STS_IRC_2_DRY Dry key pressed

%SB6012 1 97 CFW_STS_IRC_2_CLEAN Clean key pressed

%SB6012 2 98 CFW_STS_IRC_2_TIMER Timer key pressed

%SB6012 3 99 CFW_STS_IRC_2_FUNC Func function active

%SB6012 4 100 CFW_STS_IRC_2_SWING Sw ing function active

Equipments (Devices)

WPS v2.5X | 403

%SB6012 5 101 CFW_STS_IRC_2_COOL Cool key pressed

%SB6012 6 102 CFW_STS_IRC_2_MODE Mode key pressed

%SB6012 7 103 CFW_STS_IRC_2_POWER Pow er key pressed

%SB6013 0 104 CFW_STS_IRC_2_TEMP_UNIT Temp unit key pressed

%SB6013 1 105 CFW_STS_IRC_2_UVC UVC function active

Reading - Function Modbus 04 "Read Input Registers"

Speed

%

SW6200
-- 3100 CFW_STS_MOTOR_SPEED_13BITS Motor speed in 13 bits (8192)

%

SW6202
-- 3101 CFW_STS_MOTOR_SYNC_SPEED Motor synchronous speed in rpm

%

SW6204
-- 3102 CFW_STS_MOTOR_SPEED_RPM Motor speed in rpm

%

SW6206
-- 3103 CFW_STS_SPEED_REFERENCE Speed reference after ramp in rpm

Alarm and Fault

%

SW6208
-- 3104 CFW_STS_PRES_ALARM Alarm number that may be present in the inverter

%

SW6210
-- 3105 CFW_STS_PRES_FAULT Fault number that may be present in the inverter

Current and Torque

%

SW6212
-- 3106 CFW_STS_RATED_CURRENT Inverter rated current (HD) in A (x10)

%

SW6214
-- 3107 CFW_STS_MOTOR_CURRENT Motor current w ithout f ilter in A (x10)

%

SW6216
-- 3108 CFW_STS_MOTOR_TORQUE Motor torque w ithout f ilter in % (x10)

Infrared Remote Control

%

SW6218
-- 3109 CFW_STS_IRC_2_INFO IRC_2 info

Writing / Reading System Markers (Command)

Reading - Function Modbus 01 "Read Coils"
Writing - Function Modbus 05 "Write Single Coil" and 15 "Write Multiple Coils"

Equipments (Devices)

WPS v2.5X | 404

Address Bit Modbus Tag Description

Logical Command

%CB6008 0 16 CFW_CMD_RUN_STOP
Run the motor according to the speed reference value (0-

Stop, 1-Run)

%CB6008 1 17 CFW_CMD_GENERAL_ENABLE
Enables the inverter allow ing the motor operation (0-Disable,

1-Enable)

%CB6008 2 18 CFW_CMD_SPEED_DIRECTION
The motor runs in the direction indicated by the speed

reference (0-Reverse, 1-Forw ard)

%CB6008 3 19 CFW_CMD_JOG Enables the JOG function (0-Disable, 1-Enable)

%CB6008 4 20 CFW_CMD_LOC_REM Selects the inverter operation mode (0-Local, 1-Remote)

%CB6008 5 21 CFW_CMD_SECOND_RAMP
Selects the ramp to accelerate and decelerate the motor (0-

First, 1-Second)

%CB6008 6 22
CFW_CMD_FORCE_RUN_STOP_SPL

C

It allow s that the SoftPLC command CFW_CMD_RUN_STOP

change the inverter command Run/Stop regardless of source

programmed for Start/Stop via P224 or P227

%CB6008 7 23 CFW_CMD_FAULT_RESET Executes the fault reset command

11.2.3 I/O's

Hardware information can be found in the Manual of the CFW300 at the website www.weg.net.

Digital Inputs

Endereço Bit Modbus Tag Descrição

%IB0 0 16000 DI1 Digital input 1

%IB0 1 16001 DI2 Digital input 2

%IB0 2 16002 DI3 Digital input 3

%IB0 3 16003 DI4 Digital input 4

%IB0 4 16004 DI5 Digital input 5 - I/O expansion module

%IB0 5 16005 DI6 Digital input 6 - I/O expansion module

%IB0 6 16006 DI7 Digital input 7 - I/O expansion module

%IB0 7 16007 DI8 Digital input 8 - I/O expansion module

Analog Inputs

Endereço Bit Modbus Tag Descrição

%IW2 -- 5001 AI1 Analog input 1

%IW4 -- 5002 AI2 Analog input 2 - I/O expansion module

Added from firmware version V2.00

http://www.weg.net

Equipments (Devices)

WPS v2.5X | 405

Endereço Bit Modbus Tag Descrição

%IW6 -- 5003 AIP Analog input (Potentiometer) - I/O expansion module

%IW8 -- 5004 FI1 Frequency input 1

%IW10 -- 5005 FI2 Frequency input 2 - I/O expansion module

%IW12 -- 5006 FI3 Frequency input 3 - I/O expansion module

%IW14 -- 5007 FI4 Frequency input 4 - I/O expansion module

Digital Outputs

Endereço Bit Modbus Tag Descrição

%QB0 0 16000 DO1 Digital output 1

%QB0 1 16001 DO2 Digital output 2 - I/O expansion module

%QB0 2 16002 DO3 Digital output 3 - I/O expansion module

%QB0 3 16003 DO4 Digital output 4 - I/O expansion module

Analog Outputs

Endereço Bit Modbus Tag Descrição

%QW2 -- 5001 AO1 Analog output 1

%QW4 -- 5002 AO2 Analog output 1 - I/O expansion module

Added from firmware version V2.00

Endereço Bit Modbus Tag Descrição

%QW6 -- 5003 FO1 Frequency output 1 - I/O expansion module

%QW8 -- 5004 FO2 Frequency output 2 - I/O expansion module

%QW10 -- 5005 FO3 Frequency output 3 - I/O expansion module

NOTE!
The addresses of the digital and analog outputs were changed from firmware version 1.20. To
convert the variables it is necessary to change the addresses:
%QB6 => %QB0
%QW8 => %QW2
%QW10 => %QW4

11.2.4 Import from WLP

The function import from WLP is utilized to import Ladder developed on WLP software to equipment (device).

The import from WLP can be executed during the resource creation.

Equipments (Devices)

WPS v2.5X | 406

1. To execute the import WLP function click the Import from WLP button and select the WLP project folder or
the WLP BKP file.

Equipments (Devices)

WPS v2.5X | 407

Equipments (Devices)

WPS v2.5X | 408

2. After import from WLP completed successfully click the Finish button to copy the imported files to new
resource.

11.2.5 Parameters

11.2.5.1 Overview

The parameter configuration screen is used to configure and monitor all the parameters of the equipment,
including the user parameters.

NOTE!
The reading and writing of such parameters is done on this screen; only the user parameter
configuration must be sent the first time or whenever modified by means of the resource
download routine.

Below is an overview of the parameter configuration screen.

Equipments (Devices)

WPS v2.5X | 409

1. Parameter files. In this part are all the parameter configuration files created by the user. Notice that when
the file features a person figure on the table, it means this parameter table contains hidden parameters/
group of parameters.

2. Group of parameters. This tree shows all the group of parameters. Notice that the same parameter can be
in more than one group, and when its value is modified, it will be modified in all the groups to which it
belongs.

3. Modified group of parameters. Group of parameters which contain the figure of a person on the table
means they have hidden parameters.

4. Commands. The commands are described below in the order they appear:
4.1.Unhide parameter: In case some parameter has been hidden, this button allows making it visible

again.
4.2.Hide parameter: Just select one or more parameters on the table and trigger this command to hide

them.
4.3.Save table: It saves the values of the parameters shown on the equipment screen; the sent values are

the ones in the User column. The flow is User -> Monitored (equipment)
4.4.Read table: It reads the parameters of the equipment shown in the Monitored column and saves them

in the parameter file in the User column. The flow is Monitored (equipment) -> User
4.5.User parameters: It opens a screen to edit the user parameters.
4.6.Filter: It opens a parameter filter option, and it can filter by parameter number or description.
4.7.User Parameters and Monitored Parameters. These two columns show the off-line and on-line

parameters, so to speak. The User column shows the values contained in the file located on the
computer and the Monitored column shows the values that are effectively saved on the equipment.
Whenever you use the Save Parameter option, the sent values will be from the User column to the
Monitored column, that is, File -> Equipment. In case of reading, the flow is the opposite, from the
Monitored column to the User column, that is, Equipment -> File. In case you wish to change the
values directly on the equipment without changing it in the file, just click on the monitored column,

Equipments (Devices)

WPS v2.5X | 410

change the values and the modification will occur on-line.
5. Modified parameters: Whenever a parameter value in the User column is different from the Monitored

column, it will be shown in red.
6. Output. This screen shows error information in case they occur during the writing or reading of the

parameters.

11.2.5.2 Configuration

Below is the list of the required steps to create a parameter file.

1. Create a new parameter file.

2. Define a name for the parameter file

3. Configure which parameters you wish to view in your parameter table

Equipments (Devices)

WPS v2.5X | 411

4. After performing the steps above, the parameter file will be created and the equipment can be
parameterized.

Equipments (Devices)

WPS v2.5X | 412

11.2.5.3 Read and Write of Parameters

There are 3 (three) ways to do the reading and writing of the parameters: by means of table, selection and
group.

1. Table writing. The table writing command will send all visible parameters on the equipment screen. If and
error occurs during the sending of some specific parameter, a message will be shown on the output window
informing the error. It is important to notice that only visible parameters will be sent; therefore, it is necessary
attention to which node of the group of parameters tree you are viewing. Example: If you wish to write all of
them without filtering per group, just select the tree root.

Equipments (Devices)

WPS v2.5X | 413

2. Table reading. The table reading command will read all the parameters of the equipment. If a error occurs
during the reading of some specific parameter, a message will be shown on the output window informing the
error. It is important to notice that only visible parameters will be read; therefore, it is necessary attention to
which node of the group of parameters tree you are viewing. Example: If you wish to read all of them without
filtering per group, just select the tree root.

Equipments (Devices)

WPS v2.5X | 414

3. Reading/writing of specific parameters. In order to read/write one or more specific parameters, just
select them on the table, right click and choose the desired option: read or write parameter.

4. Reading/writing of group of parameters. In order to read/write only one group of parameters, just select
it on the group tree, right click and choose the desired option: read or write group.

Equipments (Devices)

WPS v2.5X | 415

11.2.5.4 Hide/Unhide Parameters and Group of Parameters

The parameter can be hidden/unhidden in two ways: individually or in group.

1. Hide parameters. In order to hide a parameter individually, just right click on the desired parameters and
select the Hide Parameter option. You can also press the Delete key.

2. Unhide Parameters. In order to show hidden parameters, right click and choose the Unhide Parameters

Equipments (Devices)

WPS v2.5X | 416

or press the Insert key. Then, a window will open and show the hidden parameters. Now, you just have to
select the desired parameters and confirm.
Note: The parameters shown on this new window are only those which belong to the current filter according to
the selection on the parameter group tree. In the figures below, the CAN group is selected; that means that
only the hidden parameters of this group will be shown.

Equipments (Devices)

WPS v2.5X | 417

Equipments (Devices)

WPS v2.5X | 418

3. Hide Group of Parameters. In order to hide a group of parameters, just select the group on the tree and
use the Hide Group option.

Equipments (Devices)

WPS v2.5X | 419

Equipments (Devices)

WPS v2.5X | 420

4. Unhide Group of Parameters. In order to show a hidden group of parameters, just select the root of the
group tree and select the Unhide Group option. A window will open showing the groups that are hidden; then
just select the group you wish to unhide.

Equipments (Devices)

WPS v2.5X | 421

Equipments (Devices)

WPS v2.5X | 422

Equipments (Devices)

WPS v2.5X | 423

5. Hide and Show Parameters and Groups of Parameters. By means of this option, you have full control
of the parameters and groups of parameters. It is possible to hide and unhide individual parameters, multiple
parameters, individual groups and multiple groups in the same action.

Equipments (Devices)

WPS v2.5X | 424

Equipments (Devices)

WPS v2.5X | 425

11.2.5.5 User Parameters

In order to open the configuration screen of the user parameters, just click on the User Parameters option on
the Parameter node of the project tree or click on the icon indicated on the tool bar of the parameter file.

Configuration Table.

On the user parameter configuration table, it is possible to define several attributes to the parameters, such as
description, minimum and maximum values, unit, digits, data type, etc.

NOTE!
These settings will be automatically displayed in the parameter table. However, to be sent to the
device, you need to download the resource.

Equipments (Devices)

WPS v2.5X | 426

Table fields:

Parameter: User parameter identification.

Description: Description of the user parameter in the parameter table. On devices that have text-based
HMIs, the description is sent to the machine and displayed on the HMI.

Minimum: Minimum input value for parameter.

Maximum: Maximum input value for parameter.

Unit: Unit displayed on the device's HMI.

Default: Value loaded when restore factory default is selected.

Retentive: Retain value after rebooting devices.

Hexadecimal: Displays the value in hexadecimal.

Digits: Number of decimal digits for displaying value.

Datatype: Parameter datatype used by the ladder application.

Password: Enables password request by changing parameter value.

Equipments (Devices)

WPS v2.5X | 427

Read only: It does not allow the writing of values in the parameter by the communication network or the HMI.
Writing is done only by the ladder application.

Display HMI: Displays the parameter in the HMI.

Performs modification: Confirmation options when changing the parameter:
o No confirmation: Does not prompt for confirmation when changing parameter.
o With confirmation and engine stopped: Request confirmation and allow change only with engine stopped.
o With confirmation: Prompt for confirmation when changing parameter.

Stopped motor: Perform change only with motor stopped.

Help: On devices that have text-based HMI, you can edit a help text for the parameter.

View the user parameter

In the parameter table, the user parameters will be shown as they are configured on the configuration screen.

11.2.6 Ladder

11.2.6.1 Coil

11.2.6.1.1 DIRECTCOIL

Logical block used to assign direct values of the output variables.

Equipments (Devices)

WPS v2.5X | 428

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

Operation

The block transfers the value of A for the memory address corresponding to O1.

Diagram

Block Flowchart

Example

The above example keeps the digital output DO9 permanently connected, because the value of A in
this case is the value of the left bus which is always considered high logic level (TRUE).

11.2.6.1.2 INVERTEDCOIL

Logical block used for assigning values denied to output variables.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 429

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

Operation

The block transfers the denied value of A for the memory address corresponding to O1.

Diagram

Block Flowchart

Example

The above example disables the digital output DO3 when some of the digital inputs DI1 and DI2 are
with FALSE value. When both inputs are with a TRUE value, DO3 activates.

Equipments (Devices)

WPS v2.5X | 430

11.2.6.1.3 RESETCOIL

Logical block used for indefinite disabling of output variables.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

Operation

When identifying a TRUE value in A, this block transfers a FALSE value to the memory address
corresponding to O1.
When identifying a FALSE value in A, this block performs no operation.

Diagram

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 431

The example above activates permanently the system control marker that enables end-of-message
character in RS232 communication to identify a TRUE level at the digital input DI5.

11.2.6.1.4 SETCOIL

Logical block used for indefinite enabling of output variables.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

Operation

When identifying a TRUE value in A, this block transfers the value of A for the memory address
corresponding to O1.
When identifying a FALSE value in A, this block performs no operation.

Diagram

Block Flowchart

Equipments (Devices)

WPS v2.5X | 432

Example

The example above activates permanently the system control marker that enables end-of-message
character in RS232 communication to identify a TRUE level at the digital input DI6.

11.2.6.1.5 TOGGLECOIL

Logical block used for output variables alternance.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

VAR TOGGLECOIL_INST_0 TOGGLECOIL Instance of access to block structure

Operation

When identifying a transition from FALSE to TRUE (leading edge) on A, the block reverses the status
of O1.

Diagram

Equipments (Devices)

WPS v2.5X | 433

Block Flowchart

Example

The above example inverts the state of the digital output DO6 to each disabling the internal buzzer.

11.2.6.2 Communication Network

11.2.6.2.1 Modbus RTU

11.2.6.2.1.1 Modbus RTU Overview

Operation in the Modbus RTU Network - Master Mode

The CFW300 allows operation as a master for the Modbus RTU network. For this operation, it is necessary to
observe the following points:

Only interface RS485 allows operation as a network master.
It is necessary to program, in product configurations, the operation mode as "Master", besides the
communication rate, parity, and stop bits, which must be the same for the whole equipment in the network.
The Modbus RTU network master does not have an address, so the address configured in the CFW300 is
not used.
Sending and receiving telegrams via RS485 interface using the Modbus RTU is programmed by using blocks
in Ladder programming language. It is necessary to know the available blocks and the Ladder programming
software in order to be able to program the network master.

Equipments (Devices)

WPS v2.5X | 434

The following functions are available for the sending of requisitions by the Modbus master:
o Function 01: Read Coils
o Function 02: Read Discrete Inputs
o Function 03: Read Holding Registers
o Function 04: Read Input Registers
o Function 05: Write Single Coil
o Function 06: Write Single Register
o Function 15: Write Multiple Coils
o Function 16: Write Multiple Registers

Blocks to program the master

In order to control and monitor the Modbus RTU communication using the CFW300, the following blocks were
developed, and they must be used when programming in Ladder.

11.2.6.2.1.2 MB_MasterControlStatus

Block that allows monitoring various statuses of the Modbus RTU network master.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 435

Variable Type Name Data Type Description

VAR_INPUT
Execute BOOL Block enabling

DisableComm BOOL Disables Modbus RTU communication

VAR_OUTPUT

Done BOOL Output enabling

CommDisabled BOOL Disabled communication f lag

TxCounter WORD UINT Counter of requests sent

RxCounter WORD UINT Counter of telegrams received

NoAnswerCounter WORD UINT Counter of requests not answ ered

ErrorResponseCounter WORD UINT
Counter of responses received w ith error

information

LastErrorSlaveAddress BYTE USINT
Slave address in w hich the last communication

error w as detected

LastErrorResult BYTE USINT

Operation result of the last communication error

received

(0 = No error)

(4 – Response Timeout)

(5 = Slave returned error)

LastErrorCode BYTE USINT Code of the last communication error received

Operation

This block remains active while Execute is at TRUE level, updating its outputs according to the
monitoring of the master and input requests. When Execute receives FALSE level, the inputs are
ignored and the outputs are zeroed. The Done output receives TRUE level when Execute has TRUE
level and block finished its execution.

A TRUE level DisableComm disables the Modbus RTU communication and resets the status counters
and markers of the master. These markers and counters are displayed in the output block each
having some data corresponding to its description. Their values are also cleared at shutdown of the
master.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 436

Example

The example above requests status data of the Modbus RTU network master, and allows disabling
communication through DISABLE. The block ends successfully, Done output is activated.

11.2.6.2.1.3 MB_ReadBinary

Block that performs a reading of up to 128 binary data (via Read Coils or Read Discrete Inputs) of a
slave on the Modbus RTU network.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 437

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

SlaveAddress BYTE Slave address

Function# BYTE Reading function code

InitialDataAddress WORD Initial bit address of the data to be read

NumberOfData BYTE Number of bits to be read (1 to 128)

Timeout# WORD
Maximum w aiting time for the slave response

[ms]

Offset# BOOL
Offset Indication in InitialDataAddress, i.e., need

to subtract 1 from this number

VAR_OUTPUT

Done BOOL Output enabling

Active BOOL Aw aiting response f lag

Busy BOOL
Flag indicating the RS485 interface is busy w ith

another request

Error BOOL Error in the execution f lag

ErrorID BYTE Identif ier of the occurred error

Value BOOL Variable that stores the received data

VAR MB_READBINARY_INST_0 MB_READBINARY Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it checks whether the Modbus slave RTU in
specified address in SlaveAddress is free to send data (Busy variable at FALSE level). If so, it sends
the reading request of a number of bits indicated by NumberOfData in InitialDataAddress address
using chosen function in Function# and sets the Active output, resetting it when receiving the
response from the slave. The received data is stored in the Value variable. If the slave is not free, the
block waits Busy go to FALSE level to resubmit the request.

NOTE!
If Execute goes to FALSE level and Busy is still at TRUE level, the request is canceled.

NOTE!
Value is an array of size equal to NumberOfData. It is important to check this compatibility not to
generate errors in the block.

Equipments (Devices)

WPS v2.5X | 438

When Execute has FALSE value, Done remains FALSE. The Done output is only activated when the
block finishes executing successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Code Description

0 Executed successfully

1 Invalid input data

2 Master not enabled

4 Timeout in slave response

5 Slave returned error

Block Flowchart

Equipments (Devices)

WPS v2.5X | 439

Equipments (Devices)

WPS v2.5X | 440

Example

The above example requests reading of a number of binary data described by DATA_COUNT
positioned in the INIT Modbus RTU slave of SLAVE address through the Read Discrete Input function.
These data are forwarded to VALUE. The block ends successfully, Done output is activated.

11.2.6.2.1.4 MB_ReadRegister

Block that performs a reading of up to 64 16-bit registers (via Read Holding Registers or Read Input
Registers) of a slave on the Modbus RTU network.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 441

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

SlaveAddress BYTE Slave address

Function# BYTE Reading function code

InitialDataAddress WORD Initial register address to be read

NumberOfData BYTE Number of registers to be read (1 to 64)

Timeout# WORD
Maximum w aiting time for the slave response

[ms]

Offset# BOOL
Offset Indication in InitialDataAddress, i.e., need

to subtract 1 from this number

VAR_OUTPUT

Done BOOL Output enabling

Active BOOL Aw aiting response f lag

Busy BOOL
Flag indicating the RS485 interface is busy w ith

another request

Error BOOL Error in the execution f lag

ErrorID BYTE Identif ier of the occurred error

Value

BYTE SINT USINT

WORD UINT INT

DWORD UDINT

DINT REAL

Variable that stores the received data

VAR
MB_READREGISTER

_INST_0
MB_READREGISTER Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it checks whether the Modbus RTU slave in
specified address in SlaveAddress is free to send data (Busy variable at FALSE level). If so, it sends
the reading request of a number of registers indicated by NumberOfData in InitialDataAddress address
using chosen function in Function# and sets the Active output, resetting them when receiving the
response from the slave. The received data is stored in the Value variable. If the slave is not free, the
block waits Busy go to FALSE level to resubmit the request.

NOTE!
If Execute goes to FALSE level and Busy is still at TRUE level, the request is canceled.

NOTE!
Value is an array of number of bits NumberOfData multiplied by 16. That is, if NumberOfData is
16, Value can be an array of 32 BYTE positions, 16 WORD positions or 8 DWORD positions. It
is important to check this compatibility not to generate errors in the block.

When Execute has FALSE value, Done remains FALSE. The Done output is only activated when the
block finishes executing successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Equipments (Devices)

WPS v2.5X | 442

Code Description

0 Executed successfully

1 Invalid input data

2 Master not enabled

4 Timeout in slave response

5 Slave returned error

Block Flowchart

Equipments (Devices)

WPS v2.5X | 443

Equipments (Devices)

WPS v2.5X | 444

Example

The above example requests reading of a number of binary data described by DATA_COUNT
positioned in the INIT in the Modbus RTU slave of SLAVE address through the Read Input Register
function. These data are forwarded to VALUE. The block ends successfully, Done output is activated.

11.2.6.2.1.5 MB_SlaveStatus

Block that allows monitoring the status of 4 slaves of the Modbus RTU network.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

ErrorsToSetOffline# BYTE
Amount of errors that the master must identify until it

considers communication w ith an off line slave

AddressSlave1# BYTE Slave address 1 to be monitored

AddressSlave2# BYTE Slave address 2 to be monitored

AddressSlave3# BYTE Slave address 3 to be monitored

AddressSlave4# BYTE Slave address 4 to be monitored

VAR_OUTPUT

Done BOOL Output enabling

GeneralOffline BOOL
Flag indicating any one of the monitored

communication is off line

Slave1Offline BOOL Flag of off line status slave 1

Slave2Offline BOOL Flag of off line status slave 2

Slave3Offline BOOL Flag of off line status slave 3

Slave4Offline BOOL Flag of off line status slave 4

Equipments (Devices)

WPS v2.5X | 445

Operation

This block remains active while Execute is at TRUE level, updating its outputs according to the
number of errors recorded for each slave. When Execute receives FALSE level, the inputs are ignored
and the outputs are zeroed. The Done output receives TRUE level when Execute has TRUE level and
block finished its execution.

The ErrorsToSetOffline # input allows registering the number of errors identified in a slave that will
feature an offline communication. AddressSlave inputs allow inserting four slave addresses to be
monitored. When this monitored slave reports the programmed number of errors, its corresponding
SlaveOffline output is set to TRUE level. If any of SlaveOffline outputs is at TRUE level, GeneralOffline
also receives TRUE level.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 446

The above example checks the number of error responses sent by the slaves 2, 4, 6 and 8 of the
Modbus RTU. If any of them is greater than 5, its SX_OFF status is led to TRUE level. The block ends
successfully, Done output is activated.

11.2.6.2.1.6 MB_WriteBinary

Block that performs a writing of up to 128 binary data (via Write Single Coil or Write Multiple Coils) in
a slave on the Modbus RTU network.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 447

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

SlaveAddress BYTE Slave address

Function# BYTE Writing function code

InitialDataAddress WORD Initial bit address w here the data w ill be w ritten

NumberOfData BYTE Number of bits to be w ritten (1 to 128)

Timeout# WORD Maximum w aiting time for the slave response [ms]

Offset# BOOL
Offset Indication in InitialDataAddress, i.e., need to

subtract 1 from this number

Value BOOL Variable that stores the data to be w ritten

VAR_OUTPUT

Done BOOL Output enabling

Active BOOL Aw aiting response f lag

Busy BOOL
Flag indicating the RS485 interface is busy w ith

another request

Error BOOL Error in the execution f lag

ErrorID BYTE Identif ier of the occurred error

VAR
MB_WRITEBINARY

_INST_0
MB_WRITEBINARY Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it checks whether the Modbus RTU slave in
specified address in SlaveAddress is free to send data (Busy variable at FALSE level). If so, it sends
the writing request of a number of bits indicated by NumberOfData in InitialDataAddress address
using chosen function in Function# and sets the Active output, resetting it when receiving the
response from the slave. If the slave is not free, the block waits Busy go to FALSE level to resubmit
the request.

NOTE!
If Execute goes to FALSE level and Busy is still at TRUE level, the request is canceled.

NOTE!
Value is an array of size equal to NumberOfData. It is important to check this compatibility not to
generate errors in the block.

When Execute has FALSE value, Done remains FALSE. The Done output is only activated when the
block finishes executing successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Equipments (Devices)

WPS v2.5X | 448

Code Description

0 Executed successfully

1 Invalid input data

2 Master not enabled

4 Timeout in slave response

5 Slave returned error

Block Flowchart

Equipments (Devices)

WPS v2.5X | 449

Equipments (Devices)

WPS v2.5X | 450

Example

The example above requests written data contained in VALUE, with size described by DATA_COUNT,
at addresses positioned from INIT on Modbus RTU slave at address SLAVE using the function Write
Single Coil. The block ends successfully, Done output is activated.

11.2.6.2.1.7 MB_WriteRegister

Block that performs a reading of up to sixteen 16-bit registers (via Write Single Register or Write
Multiple Registers) of a slave on the Modbus RTU network.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 451

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

SlaveAddress BYTE Slave address

Function# BYTE Writing function code

InitialDataAddress WORD Initial register address to be w ritten

NumberOfData BYTE Number of registers to be w ritten (1 to 16)

Timeout# WORD
Maximum w aiting time for the slave response

[ms]

Offset# BOOL
Offset Indication in InitialDataAddress, i.e.,

need to subtract 1 from this number

Value

BYTE SINT USINT

WORD UINT INT

DWORD UDINT DINT

REAL

Variable that stores the data to be w ritten

VAR_OUTPUT

Done BOOL Output enabling

Active BOOL Aw aiting response f lag

Busy BOOL
Flag indicating the RS485 interface is busy

w ith another request

Error BOOL Error in the execution f lag

ErrorID BYTE Identif ier of the occurred error

VAR
MB_WRITEREGISTER

_INST_0
MB_WRITEREGISTER Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it checks whether the Modbus RTU slave in
specified address in SlaveAddress is free to send data (Busy variable at FALSE level). If so, it sends
the writing request of Value values in a number of registers indicated by NumberOfData in
InitialDataAddress address using chosen function in Function# and sets the Active output, resetting it
when receiving the response from the slave. If the slave is not free, the block waits Busy go to FALSE
level to resubmit the request.

NOTE!
If Execute goes to FALSE level and Busy is still at TRUE level, the request is canceled.

NOTE!
Value is an array of number of bits NumberOfData multiplied by 16. That is, if NumberOfData is
16, Value can be an array of 32 BYTE positions, 16 WORD positions or 8 DWORD positions. It
is important to check this compatibility not to generate errors in the block.

When Execute has FALSE value, Done remains FALSE. The Done output is only activated when the
block finishes executing successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Equipments (Devices)

WPS v2.5X | 452

Code Description

0 Executed successfully

1 Invalid input data

2 Master not enabled

4 Timeout in slave response

5 Slave returned error

Block Flowchart

Equipments (Devices)

WPS v2.5X | 453

Equipments (Devices)

WPS v2.5X | 454

Example

The example above requests written data contained in VALUE, with size described by DATA_COUNT,
at addresses positioned from INIT on Modbus RTU slave at address SLAVE using the function Write
Single Register. The block ends successfully, Done output is activated.

11.2.6.3 Compare

11.2.6.3.1 COMP_EQ

Block that compares the values of Value1 and Value2, enabling the output Q if both are equal.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of equality

Operation

When this block has a TRUE value in EN, it sends to the output Q the TRUE value if Value1 and
Value2 are the same. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 455

Example

The example above checks equality between VALUE1 and VALUE2. Since both variables have the
same value, the Q output is activated.

The example above checks equality between VALUE1 and VALUE2. Since both variables have the
same value, the Q output is activated. Notice that the types of the input variables can be different
without causing execution problems.

Equipments (Devices)

WPS v2.5X | 456

The example above checks equality between VALUE1 and VALUE2. Since both variables have
different values, the Q output is disabled.

11.2.6.3.2 COMP_GE

Block that compares the values of Value1 and Value2, enabling the output Q if Value1 is higher than
or equal to Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of equality or majority of Value1

Operation

When this block has a TRUE value in EN it sends the Q output to the TRUE value if Value1 is higher
than or equal to Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 457

Example

The example above checks equality or majority of VALUE1 in relation to VALUE2. Since VALUE1
has lower value than VALUE2, the Q output is disabled.

The example above checks equality or majority of VALUE1 in relation to VALUE2. Since both
variables have the same value, the Q output is activated.

Equipments (Devices)

WPS v2.5X | 458

The example above checks equality or majority of VALUE1 in relation to VALUE2. Since VALUE1
has higher value than VALUE2, the Q output is activated.

11.2.6.3.3 COMP_GT

Block that compares the values of Value1 and Value2, enabling the output Q if Value1 is higher than
Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of majority of Value1

Operation

When this block has a TRUE value in EN, it sends to the Q output the TRUE value if Value1 is higher
than Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 459

Example

The example above checks the majority of VALUE1 in relation to VALUE2. Since VALUE1 has lower
value than VALUE2, the Q output is disabled.

The example above checks the majority of VALUE1 in relation to VALUE2. Since both variables have
the same value, the Q output is disabled.

Equipments (Devices)

WPS v2.5X | 460

The example above checks the majority of VALUE1 in relation to VALUE2. Since VALUE1 has higher
value than VALUE2, the Q output is activated.

11.2.6.3.4 COMP_LE

Block that compares the values of Value1 and Value2, enabling the output Q if Value1 is lower than or
equal to Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of equality or minority of Value1

Operation

When this block has a TRUE value in EN, it sends to the Q output the TRUE value if Value1 is lower
than or equal to Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 461

Example

The example above checks equality or minority of VALUE1 in relation to VALUE2. Since VALUE1
has lower value than VALUE2, the Q output is activated.

The example above checks equality or minority of VALUE1 in relation to VALUE2. Since both
variables have the same value, the Q output is activated.

Equipments (Devices)

WPS v2.5X | 462

The example above checks equality or minority of VALUE1 in relation to VALUE2. Since VALUE1
has higher value than VALUE2, the Q output is disabled.

11.2.6.3.5 COMP_LT

Block that compares the values of Value1 and Value2, enabling the output Q if Value1 is lower than
Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of minority of Value1

Operation

When this block has a TRUE value in EN, it sends to the Q output the TRUE value if Value1 is lower
than or equal to Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 463

Example

The example above checks minority of VALUE1 in relation to VALUE2. Since VALUE1 has lower
value than VALUE2, the Q output is activated.

The example above checks the minority of VALUE1 in relation to VALUE2. Since both variables have
the same value, the Q output is disabled.

Equipments (Devices)

WPS v2.5X | 464

The example above checks the minority of VALUE1 in relation to VALUE2. Since VALUE1 has higher
value than VALUE2, the Q output is disabled.

11.2.6.3.6 COMP_NE

Block that compares the values of Value1 and Value2, enabling the Q output if Value1 is different from
Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of inequality

Operation

When this block has a TRUE value in EN, it sends to the Q output the TRUE value if Value1 is
different from Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 465

Example

The example above checks inequality between VALUE1 and VALUE2. Since both variables have
different values, the Q output is activated.

The example above checks equality between VALUE1 and VALUE2. Since both variables have the
same value, the Q output is disabled.

11.2.6.4 Contact

11.2.6.4.1 NCCONTACT

Normally closed contact.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 466

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT I1 BOOL Block control input

Operation

When variable I1 is with TRUE value, B receives FALSE.
When variable I1 is with FALSE value, B receives the value of A.

NOTE!
Watch out for series and parallel associations of contacts. Refer to section Contact Logic for
further information.

Diagram

Block Flowchart

Equipments (Devices)

WPS v2.5X | 467

Example

The above example performs the transfer of the opposite value of digital input DI1 to the digital output
DO2.

11.2.6.4.2 NOCONTACT

Normally open contact.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT I1 BOOL Block control input

Operation

When variable I1 is with FALSE value, B receives FALSE.
When variable I1 is with TRUE value, B receives the value of A.

NOTE!
Watch out for series and parallel associations of contacts. Refer to section Contact Logic for
further information.

Diagram

Block Flowchart

Equipments (Devices)

WPS v2.5X | 468

Example

The above example performs the transfer of the value of digital input DI1 to the digital output DO2.

11.2.6.4.3 NTSCONTACT

Falling edge transition contact.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT I1 BOOL Block control input

VAR NTSCONTACT_INST_0 NTSCONTACT Instance of access to block structure

Operation

At the instant the variable I1 transitions from TRUE to FALSE (falling edge or negative edge
transition), B receives the value of A for a scan cycle.
At all other times, B receives the FALSE value.

NOTE!
Watch out for series and parallel associations of contacts. Refer to section Contact Logic for
further information.

Diagram

Equipments (Devices)

WPS v2.5X | 469

Block Flowchart

Example

The above example resets the digital output DO1 if the SHIFT key is pressed or a positive pulse on
the digital input DI2 is given.

11.2.6.4.4 PTSCONTACT

Leading edge transition contact.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 470

Block Structure

Variable Type Name Data Type Description

VAR_INPUT I1 BOOL Block control input

VAR PTSCONTACT_INST_0 PTSCONTACT Instance of access to block structure

Operation

At the instant the variable I1 transitions from FALSE to TRUE (leading edge or positive edge
transition), B receives the value of A for a scan cycle.
At all other times, B receives the FALSE value.

NOTE!
Watch out for series and parallel associations of contacts. Refer to section Contact Logic for
further information.

Diagram

Block Flowchart

Equipments (Devices)

WPS v2.5X | 471

Example

The above example resets the digital output DO1 if the SHIFT key is pressed and a positive pulse on
the digital input DI2 is given.

11.2.6.5 Control

11.2.6.5.1 PID

Block that performs the function of a discrete PID controller. From the input variables, it calculates the
corresponding controller output.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 472

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

SetPoint REAL Automatic reference (pre-control)

ManualSetPoint REAL Forced reference (post control)

SelectSetPoint BOOL Selects w hich reference to use

Feedback REAL Feedback loop variable

MinimumOutput REAL Minimum value of the controller output

MaximumOutput REAL Maximum value of the controller output

Kp REAL Proportional gain

Ki REAL Integral gain

Kd REAL Derivative gain

TauSetPoint# REAL Time constant of the automatic reference in put f ilter

Type# BYTE Controller type

Action# BYTE Control action

Ts# UINT Sampling time [ms]

VAR_OUTPUT
ENO BOOL Output enabling

Output REAL Controller output

VAR PID_INST_0 PID Instance of access to block structure

Operation

On the positive transition edge in EN, Output receives zero value, and the block executes its
functionality as EN is at TRUE level.

When enabled, this block performs a routine PID control with the Kp, Ki and Kd parameters chosen.
The PID topology used may be the Academic or Parallel, depending on what is chosen in Type#.

Academic Form:

Parallel Form:

Equipments (Devices)

WPS v2.5X | 473

The levels of the output signal of the controller are saturated at value MinimumOutput and
MaximumOutput. The SelectSetPoint input level FALSE causes the SetPoint reference be adopted,
allowing the controller maintains control over the process. When SelectSetPoint goes to TRUE level,
the controller has no more domain, and ManualSetPoint becomes to be considered the output signal
of the controller.

Action# will define the feedback operation. If Action# is DIRECT, the operation will be SetPoint –
Feedback. If Action# is REVERSE, the operation will be Feedback – SetPoint.

Feedback receives the process variable considered as the plant output. Ts# receives the sampling
time for the controller and # TauSetPoint receives the time constant for the input filter of the automatic
reference.

When EN has FALSE value, Output remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

NOTE!
Effects of the alteration of gains on the process

If Kp decreases, the process becomes slower; generally more stable or less oscillating; it has
less overshoot.
If Kp increases, the process responds faster; it may become more unstable or more
oscillating; it has more overshoot.
If Ki decreases, the process becomes slower, lagging to reach the "SetPoint"; it becomes
more stable or less oscillating; it has less overshoot.
If Ki increases, the process becomes faster, quickly reaching the "SetPoint"; it becomes more
unstable or more oscillating; it has more overshoot.
If Kd decreases, the process becomes slower; it has less overshoot.
If Kd increases, it has more overshoot.

Equipments (Devices)

WPS v2.5X | 474

NOTE!
How to improve the performance of the process through the adjustment of gains (valid for the
Academic PID)

If the performance of the process is almost good, but the overshoot is a bit high, try to: (1)
decrease Kp 20%, (2) decrease Ki 20% and/or (3) decrease Kd 50%.
If the performance of the process is almost good, but it does not have overshoot and lags to
reach the "SetPoint", try to: (1) increase Kp 20%, (2) increase Ki 20% and/or (3) increase Kd
50%.
If the performance of the process is good, but the process output is varying too much, try to:
(1) increase Kd 50%, (2) decrease Kp 20%.
If the performance of the process is bad, i.e. after start up, the transitory lasts several periods
of oscillation that reduce very slowly or never reduce at all, try to: (1) decrease Kp 50%.
If the performance of the process is bad, i.e. after start up it slowly moves towards the
"SetPoint" without overshoot, but is still very far and the process output is less than the rated
value, try to: (1) increase Kp 50%, (2) increase Ki 50%, (3) increase Kd 70%.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 475

Equipments (Devices)

WPS v2.5X | 476

Example

The above example creates a loop of a digital PID form with sampling time 50 ms, using the
constants KP, KI and KD for control. Automatic reference SETPOINT, filtered by a first order filter with
time constant of 0:01 is used. The error signal is calculated as the difference between the filtered
reference and variable SAIDA_PLANTA. The controller output is saturated between the values 0.1 and
2.5 and sent to the variable ENTRADA_PLANTA.

11.2.6.6 Conversion

11.2.6.6.1 BOOL

11.2.6.6.1.1 BYTE_TO_BOOL

Block that performs the conversion of a BYTE value into a BOOL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BYTE USINT SINT Value in BYTE

VAR_OUTPUT
ENO BOOL End of operation

Result BOOL Value in BOOL

Operation

When this block has a TRUE value in EN, it interprets the Value value as BYTE and converts it into
BOOL, storing in Result.

Equipments (Devices)

WPS v2.5X | 477

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

The examples above perform the conversion of VALUE variable, in BYTE, into a BOOL value storing

Equipments (Devices)

WPS v2.5X | 478

the final result in RESULT. The block ends with success and ENO output is activated.

11.2.6.6.1.2 DWORD_TO_BOOL

Block that performs the conversion of a DWORD value into a BOOL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT
ENO BOOL End of operation

Result BOOL Value in BOOL

Operation

When this block has a TRUE value in EN, it interprets the Value value as DWORD and converts it into
BOOL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 479

Example

The examples above perform the conversion of VALUE variable, in DWORD, into a BOOL value
storing the final result in RESULT. The block ends with success and ENO output is activated.

11.2.6.6.1.3 REAL_TO_BOOL

Block that performs the conversion of a REAL value into a BOOL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value in REAL

VAR_OUTPUT
ENO BOOL End of operation

Result BOOL Value in BOOL

Operation

When this block has a TRUE value in EN, it interprets the Value value as REAL and converts it into
BOOL, storing in Result.

When EN has FALSE value, Result remains unchanged.

Equipments (Devices)

WPS v2.5X | 480

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 481

The examples above perform the conversion of VALUE variable, in REAL, into a BOOL value storing
the final result in RESULT. The block ends with success and ENO output is activated. Notice in the
last example that the values very close to the machine epsilon may result in an interpretation of the
FALSE value.

11.2.6.6.1.4 WORD_TO_BOOL

Block that performs the conversion of a WORD value into a BOOL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT
ENO BOOL End of operation

Result BOOL Value in BOOL

Operation

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it into
BOOL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 482

Example

The examples above perform the conversion of VALUE variable, in WORD, into a BOOL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.2.6.6.2 BYTE

11.2.6.6.2.1 BOOL_TO_BYTE

Block that performs the conversion of a BOOL value into a BYTE value.

Equipments (Devices)

WPS v2.5X | 483

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BOOL Value in BOOL

VAR_OUTPUT
ENO BOOL End of operation

Result BYTE USINT SINT Value in BYTE

Operation

When this block has a TRUE value in EN, it interprets the Value value as BOOL and converts it into
BYTE, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 484

The examples above perform the conversion of variable VALUE, in BOOL, into a BYTE value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.2.6.6.2.2 DWORD_TO_BYTE

Block that performs the conversion of a DWORD value into a BYTE value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT
ENO BOOL End of operation

Result BYTE USINT SINT Value in BYTE

Operation

When this block has a TRUE value in EN, it interprets the Value value as DWORD and converts it into
BYTE, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 485

Example

The examples above perform the conversion of variable VALUE, in DWORD, into a BYTE value storing
the final result in RESULT. The block ends with success and ENO output is activated. Notice that
only the eight least significant bits are taken into account.

11.2.6.6.2.3 REAL_TO_BYTE

Block that performs the conversion of a REAL value into a BYTE value.

Equipments (Devices)

WPS v2.5X | 486

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value in REAL

VAR_OUTPUT
ENO BOOL End of operation

Result BYTE USINT SINT Value in BYTE

Operation

When this block has a TRUE value in EN, it interprets the Value value as REAL and converts it into
BYTE, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 487

The examples above perform the conversion of variable VALUE, in REAL, into a BYTE value storing
the final result in RESULT. The block ends with success and ENO output is activated. Notice that the
results are truncated in decimal and only the eight least significant bits are taken into account.

11.2.6.6.2.4 WORD_TO_BYTE

Block that performs the conversion of a WORD value into a BYTE value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT
ENO BOOL End of operation

Result BYTE USINT SINT Value in BYTE

Operation

Equipments (Devices)

WPS v2.5X | 488

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it into
BYTE, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 489

The examples above perform the conversion of variable VALUE, in WORD, into a BYTE value storing
the final result in RESULT. The block ends with success and ENO output is activated. Notice that
only the eight least significant bits are taken into account.

11.2.6.6.3 DWORD

11.2.6.6.3.1 BOOL_TO_DWORD

Block that performs the conversion of a BOOL value into a DWORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BOOL Value in BOOL

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as BOOL and converts it into
DWORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 490

Example

The examples above perform the conversion of VALUE variable, in BOOL, into a DWORD value
storing the final result in RESULT. The block ends with success and ENO output is activated.

11.2.6.6.3.2 BYTE_TO_DWORD

Block that performs the conversion of a BYTE value into a DWORD value.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 491

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BYTE USINT SINT Value in BYTE

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as BYTE and converts it into
DWORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 492

The examples above perform the conversion of variable VALUE, in BYTE, into a DWORD value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.2.6.6.3.3 REAL_TO_DWORD

Block that performs the conversion of a REAL value into a DWORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value in REAL

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as REAL and converts it into
DWORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 493

Example

The examples above perform the conversion of variable VALUE, in REAL, into a DWORD value storing
the final result in RESULT. The block ends with success and ENO output is activated. Note that the
results are truncated in decimal and only the thirty-two least significant bits are taken into account.

11.2.6.6.3.4 WORD_TO_DWORD

Block that performs the conversion of a WORD value into a DWORD value.

Equipments (Devices)

WPS v2.5X | 494

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it into
DWORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 495

The examples above convert the VALUE variable, in WORD, into a DWORD value storing the final
result in RESULT. The block ends with success and ENO output is activated.

11.2.6.6.4 REAL

11.2.6.6.4.1 BOOL_TO_REAL

Block that performs the conversion of a BOOL value into a REAL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BOOL Value in BOOL

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in REAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as BOOL and converts it into
REAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 496

Example

The examples above perform the conversion of variable VALUE, in BOOL, into a REAL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.2.6.6.4.2 BYTE_TO_REAL

Block that performs the conversion of a BYTE value into a REAL value.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 497

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BYTE USINT SINT Value in BYTE

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in REAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as BYTE and converts it into
REAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 498

The examples above perform the conversion of variable VALUE, in BYTE, into a REAL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.2.6.6.4.3 DWORD_TO_REAL

Block that performs the conversion of a DWORD value into a REAL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in REAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as DWORD and converts it into
REAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 499

Example

The examples above perform the conversion of variable VALUE, in DWORD, into a REAL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.2.6.6.4.4 WORD_TO_REAL

Block that performs the conversion of a WORD value into a REAL value.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 500

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in REAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it into
REAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 501

The examples above perform the conversion of variable VALUE, in WORD, into a REAL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.2.6.6.5 WORD

11.2.6.6.5.1 BOOL_TO_WORD

Block that performs the conversion of a BOOL value into a WORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BOOL Value in BOOL

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as BOOL and converts it into
WORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 502

Example

The examples above perform the conversion of VALUE variable, in BOOL, into a WORD value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.2.6.6.5.2 BYTE_TO_WORD

Block that performs the conversion of a BYTE value into a WORD value.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 503

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BYTE USINT SINT Value in BYTE

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as BYTE and converts it into
WORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 504

The examples above perform the conversion of variable VALUE, in BYTE, into a WORD value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.2.6.6.5.3 DWORD_TO_WORD

Block that performs the conversion of a DWORD value into a WORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as DWORD and converts it into
WORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 505

Example

The examples above convert the VALUE variable, in DWORD, into a WORD value storing the final
result in RESULT. The block ends with success and ENO output is activated. Notice that only the
sixteen least significant bits are taken into account.

11.2.6.6.5.4 REAL_TO_WORD

Block that performs the conversion of a REAL value into a WORD value.

Equipments (Devices)

WPS v2.5X | 506

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value in REAL

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as REAL and converts it into
WORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 507

The examples above convert the VALUE variable, in DWORD, into a WORD value storing the final
result in RESULT. The block ends with success and ENO output is activated. Note that the results
are truncated in decimal and only the sixteen least significant bits are taken into account.

11.2.6.7 Counter

11.2.6.7.1 CTD

Countdown block of input pulses.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

CD BOOL Pulse identif ier

LD BOOL Loads the value of PV in CV

PV WORD UINT Value of initial configuration

VAR_OUTPUT
Q BOOL Counter zeroed f lag

CV WORD UINT Current count value

VAR CTD_INST_0 CTD Instance of access to block structure

Operation

Equipments (Devices)

WPS v2.5X | 508

When this block identifies a leading edge in CD, it decrements the CV variable until it is zero. While
CV equals zero, the output Q remains at TRUE level. By detecting high-level LD, the block loads the
PV value in CV.

Block Flowchart

Operation Diagram

Equipments (Devices)

WPS v2.5X | 509

Example

The above example shows the initial conditions of routine. As CV has a value of zero, the Q output is
enabled.

The value of the PV variable was changed to 20, but not yet loaded.

Equipments (Devices)

WPS v2.5X | 510

By identifying TRUE level in LD, the block loads the PV value to CV. Since this value is greater than
zero, the Q output is disabled.

At each leading edge identified in CD, the value of COUNT is decremented until it reaches zero, when
the Q output is enabled.

11.2.6.7.2 CTU

Block for gradual count of input pulses.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

CU BOOL Pulse identif ier

R BOOL Loads the zero value in CV

PV WORD UINT Maximum count value

VAR_OUTPUT
Q BOOL Counter overrun f lag

CV WORD UINT Current count value

VAR CTU_INST_0 CTU Instance of access to block structure

Operation

When this block identifies a leading edge in CD, it increments the CV variable until it is equal to PV.
While CV equals PV, the output Q remains at TRUE level. By detecting high-level R, the block loads
the zero value in CV.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 511

Operation Diagram

Equipments (Devices)

WPS v2.5X | 512

Example

The above example shows the initial conditions of routine. Since CV has a lower value than of PV, the
Q output is disabled.

At each leading edge identified in CU, the value of CV is incremented until it reaches the PV value,
when the Q output is enabled.

Equipments (Devices)

WPS v2.5X | 513

By identifying TRUE level in R, the block loads the zero value to CV. Since this value is lower than of
PV, the Q output is disabled.

11.2.6.7.3 CTUD

Block for gradual count and countdown of input pulses.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

CU BOOL Pulse identif ier for incremental

CD BOOL Pulse identif ier for decremental

R BOOL Loads the zero value in CV

LD BOOL Loads the value of PV in CV

PV WORD UINT Reference value

VAR_OUTPUT

ENO BOOL Output enabling

QU BOOL Counter overrun f lag

QD BOOL Counter zeroed f lag

CV WORD UINT Current count value

VAR CTUD_INST_0 CTUD Instance of access to block structure

Operation

When this block has a TRUE value in EN, it acts as a CTD block and block CTU at the same time
acting on the same CV counter. That is: increments CV until it reaches PV to the leading edges in
CU and decrements CV until it reaches zero to the leading edges in CD. A positive transition in R
carries zero in CV, while a leading edge in LD loads the PV value in CV. If CV has zero value, QD
receives TRUE, and if CV has value equal to PV, QU receives TRUE.

Equipments (Devices)

WPS v2.5X | 514

The ENO value forwards to the next Ladder block the EN value.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 515

Equipments (Devices)

WPS v2.5X | 516

Operation Diagram

Example

Equipments (Devices)

WPS v2.5X | 517

The example above shows the disabled block, with all its internal variables zeroed. Although the
external controls are activated, these values are not forwarded to the instance of the block.

When activated, the block identifies the value of PRESET, loading it in PV, and identifies that the
output is at zero, enabling the QD output. When execution is completed, the ENO output is activated.

At each leading edge identified in CU, the value of CV is incremented until it reaches the PV value,
when the QU output is enabled. When execution is completed, the ENO output is activated.

At each leading edge detected in CD, the CV value is decremented. When CV is a value between
zero and PV, both QD and QU outputs are deactivated. When execution is completed, the ENO
output is activated.

Equipments (Devices)

WPS v2.5X | 518

A TRUE value in R resets CV, while a TRUE value in LD loads the value of PV to CV. As we can see,
R prevails over LD, leaving CV and enabling the QD output. When execution is completed, the ENO
output is activated.

11.2.6.8 Data Transfer

11.2.6.8.1 DEMUX

Block that creates 16 new BOOL variables from the decomposition of a WORD variable.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Word WORD UINT INT Input variable of 15 bits

VAR_OUTPUT
ENO BOOL End of operation

Bit0 – Bit15 BOOL Bit of the corresponding position of Word

Operation

Equipments (Devices)

WPS v2.5X | 519

When this block has a TRUE value in EN, it decomposes the input variable in Word 15 Boolean
values stored in Bit0 to Bit15 variables. Bit0 corresponds to the LSB (least significant bit) and Bit15
corresponds to the MSB (most significant bit).

When EN has FALSE value, output variables remain unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 520

The example above decomposes the value of MYWORD in Boolean values, which are stored in the
output variables BIT0 to Bit15. The block ends successfully and the ENO output is activated.

11.2.6.8.2 ILOAD

Block which indirectly loads the value of a variable and transfers it to Value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Group# BYTE Group w here the variable is stored

DataType# BYTE Data type of the selected variable

Address DWORD UDINT DINT Address of the global variable, as its group

VAR_OUTPUT

ENO BOOL End of operation

Value
As selected in

DataType#
Value of the selected variable

Operation

When this block has a TRUE value in EN, it loads, in Value, the of the Address variable belonging to
the Group# group, as the selected DataType#.

Equipments (Devices)

WPS v2.5X | 521

When EN has FALSE value, Value remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

The above example loads the value of the address 40 of group 2 (GLOBAL_SYSTEM%S), which
represents the status of ESC key in UINT format for the VALUE variable. The block ends with
success and ENO output is activated.

11.2.6.8.3 ILOADBOOL

Block that indirectly loads the value of a bit in a global variable address.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 522

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Group# BYTE Group w here the variable is stored

Address DWORD UDINT DINT Address of the global variable, as its group

Bit BYTE USINT SINT Position of the bit to be checked

VAR_OUTPUT
ENO BOOL End of operation

Value BOOL Value of the bit selected by the input arguments

Operation

When this block has a TRUE value in EN, it loads, in Value, the Bit contents of the Address variable
belonging to the Group# group.

When EN has FALSE value, Value remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 523

Example

The above example loads the value of bit 1 of the address 24 of group 2 (S GLOBAL_SYSTEM%),
which represents the status of ESC key for the VALUE variable. The block ends with success and
ENO output is activated.

11.2.6.8.4 ISTORE

Block that indirectly loads the Value value in a variable.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Group# BYTE Group w here the variable is stored

DataType# BYTE Data type of the selected variable

Address DWORD UDINT DINT Address of the global variable, as its group

Value

Depending on the

selection of the

DataType#

Value to be w ritten in the selected variable

VAR_OUTPUT ENO BOOL End of operation

Operation

When this block has a TRUE value in EN, it loads the Value value in the contents of the Address
variable belonging to the Group# group, as the selected DataType#.

When EN has FALSE value, Value remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Equipments (Devices)

WPS v2.5X | 524

Block Flowchart

Example

The example above stores the VALUE value in WORD format in address 444 of group 3
(GLOBAL_SYSTEM% C), which represents the index of the communication port Modbus TCP. The
block ends with success and ENO output is activated.

11.2.6.8.5 ISTOREBOOL

Block that indirectly loads the Value value in a bit in a global variable address.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 525

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Group# BYTE Group w here the variable is stored

Address DWORD UDINT DINT Address of the global variable, as its group

Bit BYTE USINT SINT Position of the bit to be modif ied

Value BOOL New value of the selected bit

VAR_OUTPUT ENO BOOL End of operation

Operation

When this block has a TRUE value in EN, it loads the Value value in the Bit contents of the Address
variable belonging to the Group# group.

When EN has FALSE value, Value remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 526

Example

The example above stores the value of VALUE in bit 7 of the address 121 in group 3
(GLOBAL_SYSTEM% C), which represents the disable command of CANopen communication. The
block ends with success and ENO output is activated.

11.2.6.8.6 MUX

Block that creates a new WORD variable from the concatenation of 16 BOOL variables.

Equipments (Devices)

WPS v2.5X | 527

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Bit0 – Bit15 BOOL Bit of the corresponding position in the new w ord

VAR_OUTPUT
ENO BOOL End of operation

Word WORD UINT INT New w ord formed from the input bits

Operation

When this block has a TRUE value in EN, it concatenates Boolean values of the input variables and
stores this value in the variable Word. Bit0 corresponds to LSB (least significant bit) and Bit15
corresponds to the MSB (most significant bit).

When EN has FALSE value, Word remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 528

Example

The above example concatenates the Boolean values of the input bits of the block to form the output
word stored in MYWORD. The block ends with success and ENO output is activated.

Equipments (Devices)

WPS v2.5X | 529

11.2.6.8.7 SEL

Block that replicates to the output the value of an input variable (Value0 or Value1) according to the
Selector selection.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Selector BOOL Variable that selects the input

Value0
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Multiplexed input number 1

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Multiplexed input number 2

VAR_OUTPUT

ENO BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Output value selected

Operation

When this block has a TRUE value in EN, it replicates to the Result variable the Value0 value if
selector is FALSE or the Value1 value if Selector is TRUE.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 530

Example

The above example uses the SELECTOR variable as multiplexing channel selector. When it is at
FALSE level, the RESULT output gets the value of VALUE0. The block ends successfully and the
ENO output is activated.

Equipments (Devices)

WPS v2.5X | 531

The above example uses the SELECTOR variable as multiplexing channel selector. When it is at
FALSE level, the RESULT output gets the value of VALUE0. The block ends successfully and the
ENO output is activated. Note that the binary pattern has been maintained even though the decimal
representation is corrupted, since DWORD does not accept negative values.

The above example uses the SELECTOR variable as multiplexing channel selector. When it is at
TRUE level, the RESULT output gets the value of VALUE1. The block ends successfully and the ENO
output is activated. Note that the binary pattern has been maintained even though the decimal
representation is corrupted, since DWORD does not accept negative values.

11.2.6.8.8 STORE

Block that performs direct storage of data from a source to a destination.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 532

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

SRC
BYTE USINT SINT WORD UINT

INT DWORD DINT DINT REAL
Data source

VAR_OUTPUT

ENO BOOL End of operation

DST
BYTE USINT SINT WORD UINT

INT DWORD DINT DINT REAL
Data destination

Operation

When this block has a TRUE value in EN, it stores the contents from SRC into DST.

NOTE!
SRC and DST must have data types of the same size.

When EN has FALSE value, DST remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 533

The example above stores the value of the variable SRC in DST. The block ends with success and
ENO output is activated.

The example above stores the value of the variable SRC in DST. The block ends with success and
ENO output is activated. Note that the binary pattern is maintained between variables of different
types.

11.2.6.8.9 USERERR

Block that generates an alarm or fault with the number programmed by the user.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

CODE WORD UINT
Error code generated

(950 - 999)

TYPE BYTE

Error type generated

(0 - Alarm)

(1 - Fault)

VAR_OUTPUT ENO BOOL Success in the generation of error

VAR USERERR_INST_0 USERERR (*) Instance of access to block structure

NOTE!
(*) USERERR_INST_0 instance must be configurated to SCA06 and LDW900.

Operation

When this block has a TRUE value in EN, it generates an alarm or equipment failure, depending on
the type defined in TYPE with CODE code.

The value of ENO informs if the generation of alarm or fault has been executed successfully.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 534

Example

The above example, when identifying TRUE level in DI1, generates a fault with the code 974 and sets
the DO1 output.

USERERR table configuration

On devices that have text-based HMI, messages can be configured through an editor. To access the
editor, right click on the USERERR block and select the "Edit USERERR Table" option.

Equipments (Devices)

WPS v2.5X | 535

The texts configured in the table will be displayed on the HMI when the block USERERR is enabled.

After editing the table, select the argument CODE of the block equal to the CODE column of the
table.

11.2.6.9 Filter

11.2.6.9.1 LOWPASS

Block that filters the input using a low pass filter of first order and inserts the result in the output.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 536

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Input REAL Input signal

Tau REAL Filter time constant

Ts# UINT Sampling time [ms]

VAR_OUTPUT
ENO BOOL Output enabling

Output REAL Filter output

VAR LOWPASS_INST_0 LOWPASS Instance of access to block structure

Operation

When this block has a TRUE value in EN, filters the input value of Input using a low pass first order
filter described by Tau and Ts#, inserting the result in Output. On the leading edge of EN, Output
receives zero.

When EN has FALSE value, Output remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 537

Example

The above example causes OUTPUT, by identifying a leading edge in EN, to display a behavior of first
order with time constant equal to Tau and the sampling time of 2 ms, in order to achieve the reference
set to INPUT. At each calculation completed successfully, the ENO output is activated.

Equipments (Devices)

WPS v2.5X | 538

11.2.6.10 Logic

11.2.6.10.1 Logic Bit

11.2.6.10.1.1 RESETBIT

Logical block used to perform reset of a specific bit in a field.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_IN_OUT Data

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable w hose bit w ill be changed

VAR_INPUT
EN BOOL Block enabling

Position BYTE USINT Position of the bit that w ill be changed

VAR_OUTPUT DONE BOOL Operation successful

Operation

This block when it has a TRUE value in EN, resets the bit indicated in Position in the Data variable
that is forwarded to the output already with its updated value.

When EN has FALSE value, Data remains unchanged.

The DONE variable receives the same EN value, except when there is an error in the reset of the bit,
then getting a FALSE value.

NOTE!
It is important to notice that Position is within the range of values of bits corresponding to variable
type in Data. For example: if Data is a BYTE, it has 8 bits, and Position must contain a value
between 0 and 7.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 539

Example

The example above resets the bit of AUX zero position, whose initial value is 200 (1100 1000, in
binary). Since this bit already had FALSE value, nothing has changed.

The example above resets the bit in position three of AUX by changing its binary value and, therefore,
its decimal representation.

The example above resets the bit in position nine of AUX. Since AUX is a variable BYTE type, it has

Equipments (Devices)

WPS v2.5X | 540

only eight bits. Thus, the example above creates a runtime error in the block and therefore the output
is not enabled.

11.2.6.10.1.2 SETBIT

Logical block used to perform the set of a specific bit in a field.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_IN_OUT Data

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable w hose bit w ill be changed

VAR_INPUT
EN BOOL Block enabling

Position BYTE USINT Position of the bit that w ill be changed

VAR_OUTPUT DONE BOOL Operation successful

Operation

This block when it has a TRUE value in EN, sets the bit indicated in Position in the Data variable that
is forwarded to the output already with its updated value.

When EN has FALSE value, Data remains unchanged.

The DONE variable receives the same EN value, except when there is an error in the set of the bit,
then getting a FALSE value.

NOTE!
It is important to notice that Position is within the range of values of bits corresponding to variable
type in Data. For example: if Data is a BYTE, it has 8 bits, and Position must contain a value
between 0 and 7.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 541

Example

The example above sets the bit of AUX zero position, whose initial value is 153 (1001 1001, in binary).
Since this bit already had TRUE value, nothing has changed.

The example above sets the bit in position three of AUX by changing its binary value and, therefore,
its decimal representation.

The example above sets the bit in position fifteen of AUX. Since AUX is a variable BYTE type, it has

Equipments (Devices)

WPS v2.5X | 542

only eight bits. Thus, the example above creates a runtime error in the block and therefore the output
is not enabled.

11.2.6.10.1.3 TESTBIT

Logical block that revolutions the value of a specific bit in a field.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

Data

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable w hose bit w ill be tested

EN BOOL Block enabling

Position BYTE USINT Position of the bit that w ill be changed

VAR_OUTPUT Q BOOL Value of the tested bit

Operation

This block when it has a TRUE value in EN, sends to the output Q the bit value indicated in Position
in the Data variable.

When EN has FALSE value, Q also receives FALSE.

NOTE!
It is important to notice that Position is within the range of values of bits corresponding to variable
type in Data. For example: if Data is a BYTE, it has 8 bits, and Position must contain a value
between 0 and 7.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 543

Example

The example above sets the bit value of zero position of AUX, whose initial value is 74 (0100 1010 in
binary) to the output Q. Since this bit has value 0, the output is disabled.

The example above sets the value of the bit of position three of AUX to the output Q. Since this bit
has value 1, the output is enabled.

The example above sets the bit value of position ten of AUX to output Q. Since AUX is a variable of
BYTE type, it has only eight bits. Thus, the example above creates a runtime error in the block and
therefore the output is disabled.

Equipments (Devices)

WPS v2.5X | 544

11.2.6.10.2 Logic Boolean

11.2.6.10.2.1 AND

Logical block that performs an boolean "and" operation between two variables, storing the result in a
third one.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

Value2

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the “and” Boolean operation of
input variables Value1 and Value2.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 545

Example

The example above performs an "and" Boolean operation between AUX and AUX2, storing the result in
AUX3.

11.2.6.10.2.2 NOT

Block that performs a logical operation of boolean "not" in a variable, storing the result in another.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 546

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Reference variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the denied Boolean value of
the Value input variable.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

The example above performs a boolean "not" operation in AUX, storing the result in AUX2.

Equipments (Devices)

WPS v2.5X | 547

11.2.6.10.2.3 OR

Logical block that performs an Boolean "or" operation between two variables, storing the result in a
third one.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

Value2

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the “or” Boolean operation of
input variables Value1 and Value2.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 548

Example

The example above performs an "or" Boolean operation between AUX and AUX2, storing the result in
AUX3.

11.2.6.10.2.4 XNOR

Logical block that performs an Boolean "not exclusive or" operation between two variables, storing the
result in a third one.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 549

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

Value2

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the “denied exclusive or”
Boolean operation of input variables Value1 and Value2.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 550

The example above performs a "denied exclusive or" Boolean operation between AUX and AUX2,
storing the result in AUX3.

11.2.6.10.2.5 XOR

Logical block that performs an Boolean "exclusive or" operation between two variables, storing the
result in a third one.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

Value2

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the “xor” Boolean operation of
input variables Value1 and Value2.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 551

Example

The example above performs a "xor" Boolean operation between AUX and AUX2, storing the result in
AUX3.

11.2.6.10.3 Logic Rotate

11.2.6.10.3.1 ROL

Block that performs a logical left rotation operation in a value passed by Value, storing the result in
Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 552

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable to undergo rotation

Shift BYTE USINT Shift index

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of logical left shifts, according to the Shift value. The most significant bits
that are being discarded are returned to the least significant bits, characterizing the rotation.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 553

Example

The above example performs a logical left shift by one position in the VALUE variable whose initial
value is -100 (1001 1100 in binary). The discarded bits on the left are reinserted on the right. The final
result (0011 1001 in binary) is stored in RESULT.

The above example performs a logical left rotation by five positions in the VALUE variable whose initial
value is 21 (0001 0101 in binary). The discarded bits on the left are reinserted on the right. The final
result (1010 0010 in binary) is stored in RESULT.

11.2.6.10.3.2 ROR

Block that performs a logical right rotation operation in a value passed by Value, storing the result in
Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 554

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable to undergo rotation

Shift BYTE USINT Shift index

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of logical right shifts, according to the Shift value. The least significant bits
that are being discarded are returned to the most significant bits, characterizing the rotation.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 555

Example

The above example performs a logic right shift by one position in the VALUE variable whose initial
value is -128 (1000 0000 in binary). The discarded bits on the right are reinserted on the left. The final
result (0100 0000 in binary) is stored in RESULT. Notice that the sign is not preserved in this
operation.

The above example performs a logical right rotation by one position in the VALUE variable whose
initial value is -127 (1000 0001 in binary). The discarded bits on the right are reinserted on the left. The
final result (1100 0000 in binary) is stored in RESULT.

11.2.6.10.4 Logic Shift

11.2.6.10.4.1 ASHL

Block that performs a binary left shift operation in a value passed by Value, storing the result in
Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 556

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value SINT INT DINT Variable to undergo shift

Shift BYTE USINT Shift index

VAR_OUTPUT
ENO BOOL End of operation

Result SINT INT DINT Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of arithmetic left shifts, according to the Shift value.

NOTE!
All arithmetic shifts implemented maintain the sign of the variable.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 557

Description of exemple.

Description of exemple.

11.2.6.10.4.2 ASHR

Block that performs arithmetic left shift operation in a value passed by Value, storing the result in
Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value SINT INT DINT Variable to undergo shift

Shift BYTE USINT Shift index

VAR_OUTPUT
ENO BOOL End of operation

Result SINT INT DINT Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of arithmetic right shifts, according to the Shift value.

Equipments (Devices)

WPS v2.5X | 558

NOTE!
All arithmetic shifts implemented maintain the sign of the variable.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

The above example performs an arithmetic right shift by three positions in the VALUE variable whose
initial value is 52 (0011 0100 in binary). The bits on the right are being discarded, and on the left new
zeros are inserted. The final result (0000 0110 in binary) is stored in RESULT.

Equipments (Devices)

WPS v2.5X | 559

The above example performs an arithmetic right shift by two positions in the VALUE variable whose
initial value is -79 (1011 0001 in binary). The bits on the right will be discarded and new ones on the
left are inserted, since the arithmetic right shifts preserve the sign of the variable. The final result
(1111 0110 in binary) is stored in RESULT.

The above example performs an arithmetic right shift by thirteen positions in the VALUE variable
whose initial value is -128 (1000 0000 in binary). The bits on the right are being discarded, and on the
left new ones are inserted. The final result (1111 1111 in binary) is stored in RESULT.

11.2.6.10.4.3 SHL

Block that performs a binary logical left shift operation in a value passed by Value, storing the result
in Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 560

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable to undergo shift

Shift BYTE USINT Shift index

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of logical shifts left, according to the Shift value.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 561

The above example performs a logical right shift by four positions in the VALUE variable whose initial
value is 56 (0011 1000 in binary). The bits on the left are being discarded, and on the left new zeros
are inserted. The final result (0011 1000 0000 in binary) is stored in RESULT.

The above example performs a logical right shift by four positions in the VALUE variable whose initial
value is -56 (1100 1000 in binary). The bits on the left are being discarded, and on the left new zeros
are inserted. The final result (1100 1000 0000 in binary) is stored in RESULT. Since RESULT is SINT
type, it only accepts the first eight bits (1000 0000).

11.2.6.10.4.4 SHR

Block that performs a binary logical right shift operation in a value passed by Value, storing the result
in Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 562

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable to undergo shift

Shift BYTE USINT Shift index

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of logical shifts right, according to the Shift value.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 563

The above example performs a logical right shift by two positions in the VALUE variable whose initial
value is 124 (0111 1100 in binary). The bits on the right are being discarded, and on the left new zeros
are inserted. The final result (0001 1111 in binary) is stored in RESULT.

The above example performs a logical right shift by three positions in the VALUE variable whose initial
value is -98 (1001 1110 in binary). The bits on the right are being discarded, and on the left new zeros
are inserted. The final result (0001 0011 in binary) is stored in RESULT.

11.2.6.11 Math

11.2.6.11.1 Math Basic

11.2.6.11.1.1 ABS

Block that calculates the Value module, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Reference variable for the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the absolute value of the

Equipments (Devices)

WPS v2.5X | 564

Value variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not
set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the absolute value of the VALUE variable whose initial value is -45,
storing the final result, 45, in RESULT.

The above example calculates the absolute value of the VALUE variable whose initial value is -45. The
final result, 128, cannot be stored in RESULT, because it is outside the limits of accepted values by
SINT type. Therefore, RESULT remains unchanged and the output is disabled.

Equipments (Devices)

WPS v2.5X | 565

11.2.6.11.1.2 ADD

Block that calculates the sum of the values of Value1 and Value2, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First addend of the operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second addend of the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the sum of Value1 and Value2
variables. If no errors, the Done variable is set. If there is any error in the operation, Done is not set,
staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 566

Example

The above example calculates the sum of VALUE 1 and VALUE2 variables, storing the final result in
RESULT.

The above example calculates the sum of VALUE 1 and VALUE2 variables, storing the final result in
RESULT. Notice that the block accepts arguments of both signs.

Equipments (Devices)

WPS v2.5X | 567

The above example calculates the sum of VALUE1 and VALUE2 variables. The final result -170
cannot be stored in RESULT, because it is outside the limits of accepted values by SINT type.
Therefore, RESULT remains unchanged and the output is disabled.

11.2.6.11.1.3 DIV

Block that calculates the division of the values of Value1 and Value2, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Dividend of the operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Divisor of the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the division of Value1 and
Value2 variables. The value stored will be the exact division if Result is REAL, or, in other cases, only
the quotient. If no errors, the Done variable is set. If there is any error in the operation, Done is not
set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 568

Example

The above example calculates the division of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Since RESULT is SINT type, only the quotient is stored in it.

The above example calculates the division of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Since RESULT is of REAL type, the exact value of the division is stored in it.

Equipments (Devices)

WPS v2.5X | 569

The above example calculates the division of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Since RESULT is SINT type, only the quotient is stored in it. Notice that the block
accepts arguments of both signs.

The above example calculates the division of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Since VALUE2 is zero, the block generates a runtime error, RESULT remains unchanged
and the output is disabled.

11.2.6.11.1.4 MOD

Block that calculates the remainder of the values of Value1 and Value2, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT
Dividend of the operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT
Divisor of the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT

Variable that stores the result of the

operation

Operation

Equipments (Devices)

WPS v2.5X | 570

When this block has a TRUE value in EN, it sends to the Result output the remainder of Value1 and
Value2 variables. If no errors, the Done variable is set. If there is any error in the operation, Done is
not set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the remainder of VALUE 1 and VALUE2 variables, storing the final
result in RESULT.

Equipments (Devices)

WPS v2.5X | 571

The above example calculates the remainder of VALUE 1 and VALUE2 variables, storing the final
result in RESULT. Notice that the block accepts arguments of both signs.

The above example calculates the remainder of VALUE 1 and VALUE2 variables, storing the final
result in RESULT. Since VALUE2 is zero, the block generates a runtime error, RESULT remains
unchanged and the output is disabled.

11.2.6.11.1.5 MUL

Block that calculates the multiplication of the values of Value1 and Value2, storing the result in
Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First factor of the operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second factor of the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

Equipments (Devices)

WPS v2.5X | 572

When this block has a TRUE value in EN, it sends to the Result output the multiplication of Value1
and Value2 variables. If no errors, the Done variable is set. If there is any error in the operation, Done
is not set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the product of VALUE 1 and VALUE2 variables, storing the final result
in RESULT.

Equipments (Devices)

WPS v2.5X | 573

The above example calculates the product of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Notice that the block accepts arguments of both signs.

The above example calculates the product of VALUE1 and VALUE2 variables. The final result 224
cannot be stored in RESULT, because it is outside the limits of accepted values by SINT type.
Therefore, RESULT remains unchanged and the output is disabled.

11.2.6.11.1.6 NEG

Block that calculates the opposite (i.e., the product with -1) of a value passed by Value, storing the
result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Reference variable for the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the opposite of the Value
variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not set,
staying in FALSE status, while Result remains with its value unchanged.

Equipments (Devices)

WPS v2.5X | 574

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the opposite of the VALUE variable whose initial value is 21, storing
the final result, -21, in RESULT.

The above example calculates the opposite of the VALUE variable whose initial value is -56, storing
the final result, 56, in RESULT.

Equipments (Devices)

WPS v2.5X | 575

]

The above example calculates the opposite of the VALUE variable whose initial value is -128. The final
result, 128, cannot be stored in RESULT, because it is outside the limits of accepted values by SINT
type. Therefore, RESULT remains unchanged and the output is disabled.

11.2.6.11.1.7 SUB

Block that calculates the subtraction between the Value1 and Value2 values, storing the result in
Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Minuend of operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Subtrahend of operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the subtraction of Value1 and
Value2 variables. If no errors, the Done variable is set. If there is any error in the operation, Done is
not set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 576

Example

The above example calculates the subtraction of VALUE 1 and VALUE2 variables, storing the final
result in RESULT.

The above example calculates the subtraction of VALUE 1 and VALUE2 variables, storing the final
result in RESULT. Notice that the block accepts arguments of both signs.

Equipments (Devices)

WPS v2.5X | 577

The above example calculates the subtraction of VALUE1 and VALUE2 variables. The final result 141
cannot be stored in RESULT, because it is outside the limits of accepted values by SINT type.
Therefore, RESULT remains unchanged and the output is disabled.

11.2.6.11.2 Math Extended

11.2.6.11.2.1 ALOG10

Block that calculates the antilogarithm (exponent with base 10) of the Value value, storing the result
in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the antilogarithm of the Value
variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not set,
staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 578

Example

The above example calculates the antilogarithm of the VALUE variable, storing the final result in
RESULT. The block ends with success and Done output is activated.

The above example calculates the antilogarithm of the VALUE variable, storing the final result in
RESULT. The indicated value is the minimum input value for which the block revolutions a nonzero
result. The block ends with success and Done output is activated.

The above example calculates the antilogarithm of the VALUE variable, storing the final result in

Equipments (Devices)

WPS v2.5X | 579

RESULT. Below the minimum values cause the block to return a null value. The block ends with
success and Done output is activated.

The above example calculates the antilogarithm of the VALUE variable, storing the final result in
RESULT. The indicated value is the maximum input value for which the block revolutions a valid result.
The block ends with success and Done output is activated.

The above example calculates the antilogarithm of the VALUE variable, storing the final result in
RESULT. Values higher than the maximum cause the block to generate an error, the RESULT output
remains unchanged and Done output is disabled.

11.2.6.11.2.2 EXP

Block that calculates the exponential of the Euler number "and" raised to the value of Value, storing
the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the exponent of the Euler
number "and" raised to the Value variable. If no errors, the Done variable is set. If there is any error in
the operation, Done is not set, staying in FALSE status, while Result remains with its value
unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Equipments (Devices)

WPS v2.5X | 580

Block Flowchart

Example

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
The block ends with success and Done output is activated.

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
The indicated value is the minimum input value for which the block revolutions a nonzero result. The
block ends with success and Done output is activated.

Equipments (Devices)

WPS v2.5X | 581

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
Values below the minimum cause the block to return to a null value. The block ends with success
and Done output is activated.

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
The indicated value is the maximum input value for which the block revolutions a valid result. The
block ends with success and Done output is activated.

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
Values higher than the maximum cause the block to generate an error, the RESULT output remains
unchanged and Done output is disabled.

11.2.6.11.2.3 LN

Block that calculates the natural logarithm of the Value value, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the natural logarithm of the
Value variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not
set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Equipments (Devices)

WPS v2.5X | 582

Block Flowchart

Example

The above example calculates the natural logarithm of the VALUE variable, storing the final result in
RESULT. The block ends with success and Done output is activated.

The above example calculates the natural logarithm of the VALUE variable, storing the final result in
RESULT. The block generates a runtime error, since VALUE has value zero, and Done output is
disabled.

Equipments (Devices)

WPS v2.5X | 583

11.2.6.11.2.4 LOG10

Block that calculates the common logarithm (base 10) of the Value value, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the common logarithm of the
Value variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not
set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 584

Example

The above example calculates the common logarithm of the VALUE variable, storing the final result in
RESULT. The block ends with success and Done output is activated.

The above example calculates the common logarithm of the VALUE variable, storing the final result in
RESULT. The block generates a runtime error, since VALUE has negative value, and Done output is
disabled.

11.2.6.11.2.5 POW

Block that calculates the value of Value raised to the exponent Power, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value REAL Base of the operation

Power REAL Exponent of the operation

VAR_OUTPUT

Done BOOL End of operation

Result REAL
Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of Value raised to
the exponent Power. If no errors, the Done variable is set. If there is any error in the operation, Done
is not set, staying in FALSE status, while Result remains with its value unchanged.

Equipments (Devices)

WPS v2.5X | 585

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the value of VALUE raised to the POWER variable, storing the final
result in RESULT. The block ends with success and Done output is activated.

The above example calculates the value of VALUE raised to the POWER variable, storing the final
result in RESULT. The block ends with success and Done output is activated.

Equipments (Devices)

WPS v2.5X | 586

The above example calculates the value of VALUE raised to the POWER variable, storing the final
result in RESULT. Since the result is higher than the maximum supported by REAL type, the block
generates an error and Done output is disabled.

11.2.6.11.2.6 ROUND

Block that rounds the value of Value, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT

Done BOOL End of operation

Result REAL
Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the rounded value of Value. If
no errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Compatibility

Device Version

PLC300 2.10 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 587

Example

The above example rounds the value of the VALUE variable, storing the final result in RESULT.
Decimals less than 0.5 are discarded. The block ends with success and Done output is activated.

The above example rounds the value of the VALUE variable, storing the final result in RESULT.
Decimals greater than or equal to 0.5 promote unity value immediately above. The block ends with
success and Done output is activated.

11.2.6.11.2.7 SQRT

Block that calculates the square root value of Value, storing the result in Result.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 588

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the square root value of
Value. If no errors, the Done variable is set. If there is any error in the operation, Done is not set,
staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 589

The above example calculates the square root value of the VALUE variable, storing the final result in
RESULT. The block ends with success and Done output is activated.

The above example calculates the square root value of the VALUE variable, storing the final result in
RESULT. The block generates a runtime error, since VALUE has negative value, and Done output is
disabled.

11.2.6.11.2.8 TRUNC

Block that truncates the value of Value, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT

Done BOOL End of operation

Result REAL
Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the truncated value of Value. If
no errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Compatibility

Equipments (Devices)

WPS v2.5X | 590

Device Version

PLC300 2.10 or higher

SCA06 2.00 or higher

Block Flowchart

Example

The above example truncates the value of the VALUE variable, storing the final result in RESULT.
Decimals are discarded. The block ends with success and Done output is activated.

11.2.6.11.3 Math Trigonometry

11.2.6.11.3.1 ACOS

Block that calculates the arccosine of Value, storing the result in Angle.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 591

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value of cosine

VAR_OUTPUT
Done BOOL End of operation

Angle REAL Value of the angle w hose cosine is equal to Value (in radians)

Operation

When this block has a TRUE value in EN, it sends to the Angle output the arccosine of Value. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Angle remains with its value unchanged.

When EN has FALSE value, Angle remains unchanged and Done remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 592

The above example calculates the arc, in radians, whose cosine is the VALUE variable, storing the
final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the arc, in radians, whose cosine is the VALUE variable, storing the
final result in RESULT. The block generates a runtime error, since VALUE has value inferior to 1, and
Done output is disabled.

11.2.6.11.3.2 ASIN

Block that calculates the arcsine of Value, storing the result in Angle.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value of sine

VAR_OUTPUT
Done BOOL End of operation

Angle REAL Value of the angle w hose sine is equal to Value (in radians)

Operation

When this block has a TRUE value in EN, it sends to the Angle output the arcsine of Value. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Angle remains with its value unchanged.

When EN has FALSE value, Angle remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 593

Example

The above example calculates the arc, in radians, whose sine is the VALUE variable, storing the final
result in RESULT. The block ends with success and Done output is activated.

The above example calculates the arc, in radians, whose sine is the VALUE variable, storing the final
result in RESULT. The block generates a runtime error, since VALUE has value superior to 1, and
Done output is disabled.

Equipments (Devices)

WPS v2.5X | 594

11.2.6.11.3.3 ATAN

Block that calculates the arctangent of Value, storing the result in Angle.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value of tangent

VAR_OUTPUT
Done BOOL End of operation

Angle REAL Value of the angle w hose tangent is equal to Value (in radians)

Operation

When this block has a TRUE value in EN, it sends to the Angle output the arctangent of Value. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Angle remains with its value unchanged.

When EN has FALSE value, Angle remains unchanged and Done remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 595

The above example calculates the arc, in radians, whose tangent is the VALUE variable, storing the
final result in RESULT. The arc, for positive values, is always in the first quadrant. The block ends with
success and Done output is activated.

The above example calculates the arc, in radians, whose tangent is the VALUE variable, storing the
final result in RESULT. The arc, for negative values, is always in the fourth quadrant. The block ends
with success and Done output is activated.

11.2.6.11.3.4 ATAN2

Block that calculates the arctangent of Y/X, storing the result in Angle.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

X REAL Parameter X of the function

Y REAL Parameter Y of the function

VAR_OUTPUT
Done BOOL End of operation

Angle REAL Value of the angle w hose tangent is equal to (Y/X) (in radians)

Operation

When this block has a TRUE value in EN, it sends to the Angle output the arctangent of Y/X. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Angle remains with its value unchanged.

When EN has FALSE value, Angle remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 596

Example

The above example calculates the arc, in radians, whose tangent is the Y/X variable, storing the final
result in RESULT. The arc, for positive values of X and Y, is always in the first quadrant. The block
ends with success and Done output is activated.

The above example calculates the arc, in radians, whose tangent is the Y/X variable, storing the final

Equipments (Devices)

WPS v2.5X | 597

result in RESULT. The arc, for negative values of X and positive values of Y, is always in the second
quadrant. The block ends with success and Done output is activated.

The above example calculates the arc, in radians, whose tangent is the Y/X variable, storing the final
result in RESULT. The arc, for negative values of X and Y, is always in the third quadrant. The block
ends with success and Done output is activated.

The above example calculates the arc, in radians, whose tangent is the Y/X variable, storing the final
result in RESULT. The arc, for positive values of X and negative values of Y, is always in the fourth
quadrant. The block ends with success and Done output is activated.

11.2.6.11.3.5 COS

Block that calculates the cosine of Angle, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Angle REAL Angle (in radians)

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the cosine of Angle. If no

Equipments (Devices)

WPS v2.5X | 598

errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the cosine of the VALUE variable, interpreted in radians, storing the
final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the cosine of the VALUE variable, interpreted in radians, storing the
final result in RESULT. The block ends with success and Done output is activated. Notice that the
block accepts negative input values and greater than one turn.

Equipments (Devices)

WPS v2.5X | 599

11.2.6.11.3.6 SIN

Block that calculates the sine of Angle, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Angle REAL Angle (in radians)

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the sine of Angle. If no errors,
the Done variable is set. If there is any error in the operation, Done is not set, staying in FALSE
status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 600

The above example calculates the sine of the VALUE variable, interpreted in radians, storing the final
result in RESULT. The block ends with success and Done output is activated.

The above example calculates the sine of the VALUE variable, interpreted in radians, storing the final
result in RESULT. The block ends with success and Done output is activated. Notice that the block
accepts negative input values.

The above example calculates the sine of the VALUE variable, interpreted in radians, storing the final
result in RESULT. The block ends with success and Done output is activated. Notice that the block
accepts values greater than one full turn.

11.2.6.11.3.7 TAN

Block that calculates the tangent of Angle, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Angle REAL Angle (in radians)

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

Equipments (Devices)

WPS v2.5X | 601

When this block has a TRUE value in EN, it sends to the Result output the tangent of Angle. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the tangent of the VALUE variable, interpreted in radians, storing the
final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the tangent of the VALUE variable, interpreted in radians, storing the
final result in RESULT. The block ends with success and Done output is activated. Notice that the
block accepts negative input values and greater than one turn.

Equipments (Devices)

WPS v2.5X | 602

11.2.6.11.4 Math Util

11.2.6.11.4.1 MAX

Block that compares the values of Value1 and Value2 and stores the highest of them in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Highest of the values compared

Operation

When this block has a TRUE value in EN, it sends to the Result output the highest value in the
comparison between Value1 and Value2. If no errors, the Done variable is set. If there is any error in
the operation, Done is not set, staying in FALSE status, while Result remains with its value
unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 603

Example

The above example calculates the maximum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the maximum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. The block ends with success and Done output is activated. Notice that the
types of the input variables can be different without causing execution problems.

Equipments (Devices)

WPS v2.5X | 604

The above example calculates the maximum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. Since the result is higher than the maximum supported by SINT type, the
block generates an error and Done output is disabled.

11.2.6.11.4.2 MIN

Block that compares the values of Value1 and Value2 and stores the lowest of them in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Low est of the values compared

Operation

When this block has a TRUE value in EN, it sends to the Result output the lowest value in the
comparison between Value1 and Value2. If no errors, the Done variable is set. If there is any error in
the operation, Done is not set, staying in FALSE status, while Result remains with its value
unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 605

Example

The above example calculates the minimum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the minimum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. The block ends with success and Done output is activated. Notice that the
types of the input variables can be different without causing execution problems.

Equipments (Devices)

WPS v2.5X | 606

The above example calculates the minimum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. Since the result is lower than the minimum supported by SINT type, the
block generates an error and Done output is disabled.

11.2.6.11.4.3 SAT

Block that performs a routine for saturation of the value found in Value in accordance with the limits
for Minimum and Maximum, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Reference value

Minimum
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Inferior saturation value

Maximum
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Superior saturation value

VAR_OUTPUT

Q BOOL
Indicator that there w as saturation in the

process

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Result of operation

Operation

When this block has a TRUE value in EN, it performs a comparison between Value and Minimum and
Maximum. If Value is in the range between Minimum and Maximum, Result receives the value of
Value and Q remains FALSE. If Value is higher than Maximum, Result receives Maximum and Q
receives TRUE. If Value is lower than Minimum, Result receives Minimum and Q receives TRUE. If
there is any error in the operation, Q is not set, staying in FALSE status, while Result remains with
its value unchanged.

Equipments (Devices)

WPS v2.5X | 607

When EN has FALSE value, Result remains unchanged and Q remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 608

The above example passes the VALUE value to RESULT, since it is not lower than MINIMUM or
higher than MAXIMUM. The block ends successfully and the Q output is disabled, since there was no
saturation.

The above example passes the MAXIMUM to RESULT, since VALUE is higher than MAXIMUM. The
block ends successfully and the Q output is activated, since there was saturation.

The above example passes the MINIMUM to RESULT, since VALUE is lower than MINIMUM. The
block ends successfully and the Q output is activated, since there was saturation.

Equipments (Devices)

WPS v2.5X | 609

The above example passes the MAXIMUM value to RESULT, since VALUE is higher than MAXIMUM.
The block ends successfully and the Q output is activated, since there was saturation.

11.2.6.12 Module

11.2.6.12.1 USERFB

Block that performs a subroutine programmed by the user.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

INPUT
According to user

programming
Block inputs

VAR_OUTPUT

ENO BOOL End of operation

OUTPUT
According to user

programming
Block outputs

VAR_IN_OUT IN_OUT
According to user

programming
Block inputs/outputs

VAR MYUSERFB_INST_0 MYUSERFB Instance of access to block structure

Operation

When this block has a TRUE value in EN, it updates the values of internal fields with the input
variables, performs the Ladder routine programmed by the user and updates the values of the outputs
after completing routine.

When EN has FALSE value, outputs remain unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Equipments (Devices)

WPS v2.5X | 610

NOTE!
Refer to section Working with USERFBs for further information.

Compatibility

Device Version

PLC300 1.50 or higher

SCA06 2.00 or higher

Block Flowchart

11.2.6.13 Motion Control

11.2.6.13.1 MW_RefVelocity

This block sends speed reference to drive.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 611

Block Structure

Variable Type Name Data Type Description

VAR_INPUT EN BOOL Block enabling

Velocity
DINT INT

REAL
Sets speed reference to drive if block is enabled

VelocityUnit

0 = 13Bits

1 = RPM

2 = HZ(x10)

Sets the speed unit:

13 Bits – Sends the speed value in 13 bits;

RPM – Sends the speed value in RPM;

HZ – Sends the speed value in Hz (x10).

RunAutomatic
0 = FALSE

1 = TRUE

Define if block w ill run the Run/Stop (CFW_CMD_RUN_STOP)

w hen it is enabled:

FALSE – Do not send Run/Stop command w ith block enabling

(it is necessary to use the marker CFW_CMD_RUN_STOP in

ladder's logic to send the Run/Stop command);

TRUE – Send Run command w ith block enabling and Stop

command w ith block disabling.

VAR_OUTPUT ENO BOOL

End of operation. Conditions for ENO = 1

Does not exist another active block

MW_RefVelocity;

Drive is enabled and stop mode set

“Stopping by inertia”.

Operation

When this block has a “0” value in EN, it does not execute and ENO output is zero.

RunAutomatic = TRUE

When this block has a “1” value in EN input, the drive is general enabled, no other motion block is
active, the Run/Stop command goes to "1", the speed reference value is send to drive and the ENO
output is set to “1”.
If EN input has a "0" value, and this block is active, the Run/Stop command is set to "0" and ENO
output goes to "0".

RunAutomatic = FALSE

When this block has a “1” value in EN input, the drive is general enabled, the Run/Stop command is
set to "1", no other motion block is active, the speed reference value is send to drive and the ENO
output is set to “1”.
If EN input has a "0" value and this block is active, ENO output is set to "0".

Equipments (Devices)

WPS v2.5X | 612

NOTE!

Check the source of speed reference and command Run/Stop for correct operation of this
block

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 613

The above example shows the MW_RefVelocity block, set to Hz and the RunAutomatic command in
TRUE, if drive is general enabled and the block is enabled, the speed reference is changed.

The above example shows the MW_RefVelocity block, set to Hz and RunAutomatic command in
FALSE, if drive is general enabled, it is necessary the Run command. So, when the block be enabled,
the speed reference would be changed.

11.2.6.14 Timer

11.2.6.14.1 TON

Timer block that, when energized, enables the output after a delay set by PT.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 614

Variable Type Name Data Type Description

VAR_INPUT

IN BOOL Block enabling

PT
WORD UINT

DWORD UDINT
Delay of output drive

TIMEBASE WORD Time base for PT and ET

VAR_OUTPUT

Q BOOL Block output

ET
WORD UINT

DWORD UDINT
Counter elapsed time

VAR TON_INST_0 TON Instance of access to block structure

NOTE!
In CFW300, the PT e ET fields can only be WORD ou UINT type.

Operation

While the IN input is FALSE, the Q output is FALSE and ET also receives the value zero.
On the edge positive transition in IN, counting is triggered and ET is incremented according to
TIMEBASE. When ET equals PT, the Q output goes to state TRUE until IN revolutions to FALSE.

Compatibility

Device Version

PLC300 1.50 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 615

Operation Diagram

Equipments (Devices)

WPS v2.5X | 616

Example

The above example shows the initial conditions of the block and of the routine variables.

When activated the IN input, counting is triggered. Since ET equals PT, the Q output is enabled.

Note that a change in PRESET variable is not forwarded to the PT field while the IN entry remains
enabled.

Equipments (Devices)

WPS v2.5X | 617

Disabling the IN input, the value of PT is updated and the Q output is disabled. When activating it
again, counting is triggered.

Disabling the IN input, the value of ET remains saved.

Enabling the IN input, the value of ET is reset and counting is triggered.

When ET reaches the value PT, the Q is output enabled and remains so while IN is at TRUE level.

11.2.6.14.2 TOF

Timer block that, when energized, disables the output after a delay set by PT.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 618

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

IN BOOL Block enabling

PT
WORD UINT

DWORD UDINT
Delay of output deactivating

TIMEBASE WORD Time base for PT and ET

VAR_OUTPUT

Q BOOL Block output

ET
WORD UINT

DWORD UDINT
Counter elapsed time

VAR TOF_INST_0 TOF Instance of access to block structure

NOTE!
In CFW300, the PT e ET fields can only be WORD ou UINT type.

Operation

While the IN input is TRUE, the Q output is also TRUE and ET also receives the value zero.
On the negative transition edge in IN, counting is triggered and ET is incremented according to
TIMEBASE. When ET equals PT, the Q output goes to state FALSE until IN revolutions to FALSE.

Compatibility

Device Version

PLC300 1.50 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 619

Operation Diagram

Equipments (Devices)

WPS v2.5X | 620

Example

The above example disables the DO1 output to identify a low level in DI1 for 12 seconds, remaining
disabled until DI1 again be TRUE.

11.2.6.14.3 TP

Timer block that, when identifies it is energized, enables the output after a delay set by PT.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 621

Variable Type Name Data Type Description

VAR_INPUT

IN BOOL Block enabling

PT
WORD UINT

DWORD UDINT
Time w hile the output is enabled

TIMEBASE WORD Time base for PT and ET

VAR_OUTPUT

Q BOOL Block output

ET
WORD UINT

DWORD UDINT
Counter elapsed time

VAR TP_INST_0 TP Instance of access to block structure

NOTE!
In CFW300, the PT e ET fields can only be WORD ou UINT type.

Operation

On the edge positive transition in IN, Q receives TRUE value, counting is triggered and ET is
incremented according to TIMEBASE. When ET equals PT, the Q output goes to state FALSE until
IN revolutions to FALSE. At that moment, if IN is at TRUE level, nothing happens. On the edge
positive transition in IN, ET is automatically reset.

Compatibility

Device Version

PLC300 1.50 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 622

Operation Diagram

Equipments (Devices)

WPS v2.5X | 623

Example

The above example enables the DO1 output for six seconds at each DI1 positive transition.

11.2.6.15 Structures

Structure is a data grouping used to define a recipe or an object.

In the Ladder program, it is possible to create variables of the structure type and use them in the blocks. To
access the internal members of the structure, the '.' is used followed by its respective member.

Creating a structure

1. With the right button of the mouse on the folder Structure, click on New file.

Equipments (Devices)

WPS v2.5X | 624

Figure 1: Creating a structure

2. Define the file name and press the Next button.

Figure 2: Defining the structure name

3. Configure the structure using the buttons presented in the figure below.

Equipments (Devices)

WPS v2.5X | 625

Figure 3: Editing the Structure

4. After finishing the edition of the structure, click on the button Finish.

Figure 4: Structure created in the project

Equipments (Devices)

WPS v2.5X | 626

Editing a structure

Just double click on the desired structure, as shown in figure 4, and a window will open as shown in figure 3,
allowing to insert new data, erase or move the position of the data.

11.2.7 Communication

11.2.7.1 Force I/O

Overview

The force inputs and outputs window is used for the values of the digital and analog inputs to be read by the
program, by values manipulated by the user, regardless their physical state. It also allows the manipulation of
the physical states of the digital and analog outputs by the user independently of the values calculated by the
program.
In order to force the device inputs and outputs, it is necessary that the online monitoring be active and the
option Run cyclically be enabled. The data are sent to the device every 2 seconds.
The values can be edited with the device disconnected. The configurations are stored in the resources and
recorded whenever the main resource selection is changed.
The data displayed on the force I/O window contain the values belonging to the resource (and configuration)
selected as main.

The force I/O window is open trough the menu Online > Force I/O:

Toolbar

The toolbar of the force window has the options to run cyclically, upload the device force configuration, enable

Equipments (Devices)

WPS v2.5X | 627

all and disable all:

 Run cyclically: Sends the user's configurations to the device and updates the state of the inputs and
outputs in a cyclic way.

 Upload configuration: Allows the current configuration of the device to be read. For this option to be
enabled, it is necessary that the online monitoring be active and the option run cyclically be disabled.

 Enable all: Enables the force I/O of all of the inputs and outputs of the device.

 Disable all: Disables the force I/O of all of the inputs and outputs of the device.

Input and Output commands

For each digital and analog input and output there is a selection box linked to enable the force, a status field
and an edition field.

Digital:

1. Number of the digital inputs/output
2. Enable/disable Force I/O
3. Current status of the I/O: It has three statuses: 1. light green LED: activated; 2. dark green LED:

deactivated; 3. gray LED: the value is not being read.
4. Enable/disable the input/output

Analog:

1. Number of the analog input/output
2. Enable/disable Force I/O
3. Current value of the input/output
4. Value of the input/output configured by the user

NOTE!
The analog signal scale has 15 bits plus 1 bit for signal, except for SSW900 which it has only 10
unsigned bits.

11.3 CFW500

Enter topic text here.

Equipments (Devices)

WPS v2.5X | 628

11.3.1 Description

With a modern design and power range of 0.25 to 30 hp, the CFW500 is a high-performance variable speed
drive that assists in the speed and torque control of three-phase induction motors. The device also features
sensorless vector, vector encoder or scalar, SoftPLC, which adds functions of PLC (Programmable Logic
Controller), Pump Genius, which features dedicated functions for pumping and selectable plug-in modules,
which provide a flexible and optimized for any application.

Refer to the user's manual of the CFW500 for further details about the product.

NOTE!

This product does not have the Ladder tool available in WPS.
You can use the WLP application if this feature is required.

11.3.2 Parameters

11.3.2.1 Overview

The parameter configuration screen is used to configure and monitor all the parameters of the equipment,
including the user parameters.

NOTE!
The reading and writing of such parameters is done on this screen; only the user parameter
configuration must be sent the first time or whenever modified by means of the resource
download routine.

Below is an overview of the parameter configuration screen.

Equipments (Devices)

WPS v2.5X | 629

1. Parameter files. In this part are all the parameter configuration files created by the user. Notice that when
the file features a person figure on the table, it means this parameter table contains hidden parameters/
group of parameters.

2. Group of parameters. This tree shows all the group of parameters. Notice that the same parameter can be
in more than one group, and when its value is modified, it will be modified in all the groups to which it
belongs.

3. Modified group of parameters. Group of parameters which contain the figure of a person on the table
means they have hidden parameters.

4. Commands. The commands are described below in the order they appear:
4.1.Unhide parameter: In case some parameter has been hidden, this button allows making it visible

again.
4.2.Hide parameter: Just select one or more parameters on the table and trigger this command to hide

them.
4.3.Save table: It saves the values of the parameters shown on the equipment screen; the sent values are

the ones in the User column. The flow is User -> Monitored (equipment)
4.4.Read table: It reads the parameters of the equipment shown in the Monitored column and saves them

in the parameter file in the User column. The flow is Monitored (equipment) -> User
4.5.User parameters: It opens a screen to edit the user parameters.
4.6.Filter: It opens a parameter filter option, and it can filter by parameter number or description.
4.7.User Parameters and Monitored Parameters. These two columns show the off-line and on-line

parameters, so to speak. The User column shows the values contained in the file located on the
computer and the Monitored column shows the values that are effectively saved on the equipment.
Whenever you use the Save Parameter option, the sent values will be from the User column to the
Monitored column, that is, File -> Equipment. In case of reading, the flow is the opposite, from the
Monitored column to the User column, that is, Equipment -> File. In case you wish to change the
values directly on the equipment without changing it in the file, just click on the monitored column,

Equipments (Devices)

WPS v2.5X | 630

change the values and the modification will occur on-line.
5. Modified parameters: Whenever a parameter value in the User column is different from the Monitored

column, it will be shown in red.
6. Output. This screen shows error information in case they occur during the writing or reading of the

parameters.

11.3.2.2 Configuration

Below is the list of the required steps to create a parameter file.

1. Create a new parameter file.

2. Define a name for the parameter file

3. Configure which parameters you wish to view in your parameter table

Equipments (Devices)

WPS v2.5X | 631

4. After performing the steps above, the parameter file will be created and the equipment can be
parameterized.

Equipments (Devices)

WPS v2.5X | 632

11.3.2.3 Read and Write of Parameters

There are 3 (three) ways to do the reading and writing of the parameters: by means of table, selection and
group.

1. Table writing. The table writing command will send all visible parameters on the equipment screen. If and
error occurs during the sending of some specific parameter, a message will be shown on the output window
informing the error. It is important to notice that only visible parameters will be sent; therefore, it is necessary
attention to which node of the group of parameters tree you are viewing. Example: If you wish to write all of
them without filtering per group, just select the tree root.

Equipments (Devices)

WPS v2.5X | 633

2. Table reading. The table reading command will read all the parameters of the equipment. If a error occurs
during the reading of some specific parameter, a message will be shown on the output window informing the
error. It is important to notice that only visible parameters will be read; therefore, it is necessary attention to
which node of the group of parameters tree you are viewing. Example: If you wish to read all of them without
filtering per group, just select the tree root.

Equipments (Devices)

WPS v2.5X | 634

3. Reading/writing of specific parameters. In order to read/write one or more specific parameters, just
select them on the table, right click and choose the desired option: read or write parameter.

4. Reading/writing of group of parameters. In order to read/write only one group of parameters, just select
it on the group tree, right click and choose the desired option: read or write group.

Equipments (Devices)

WPS v2.5X | 635

11.3.2.4 Hide/Unhide Parameters and Group of Parameters

The parameter can be hidden/unhidden in two ways: individually or in group.

1. Hide parameters. In order to hide a parameter individually, just right click on the desired parameters and
select the Hide Parameter option. You can also press the Delete key.

2. Unhide Parameters. In order to show hidden parameters, right click and choose the Unhide Parameters

Equipments (Devices)

WPS v2.5X | 636

or press the Insert key. Then, a window will open and show the hidden parameters. Now, you just have to
select the desired parameters and confirm.
Note: The parameters shown on this new window are only those which belong to the current filter according to
the selection on the parameter group tree. In the figures below, the CAN group is selected; that means that
only the hidden parameters of this group will be shown.

Equipments (Devices)

WPS v2.5X | 637

Equipments (Devices)

WPS v2.5X | 638

3. Hide Group of Parameters. In order to hide a group of parameters, just select the group on the tree and
use the Hide Group option.

Equipments (Devices)

WPS v2.5X | 639

Equipments (Devices)

WPS v2.5X | 640

4. Unhide Group of Parameters. In order to show a hidden group of parameters, just select the root of the
group tree and select the Unhide Group option. A window will open showing the groups that are hidden; then
just select the group you wish to unhide.

Equipments (Devices)

WPS v2.5X | 641

Equipments (Devices)

WPS v2.5X | 642

Equipments (Devices)

WPS v2.5X | 643

5. Hide and Show Parameters and Groups of Parameters. By means of this option, you have full control
of the parameters and groups of parameters. It is possible to hide and unhide individual parameters, multiple
parameters, individual groups and multiple groups in the same action.

Equipments (Devices)

WPS v2.5X | 644

Equipments (Devices)

WPS v2.5X | 645

11.3.2.5 User Parameters

In order to open the configuration screen of the user parameters, just click on the User Parameters option on
the Parameter node of the project tree or click on the icon indicated on the tool bar of the parameter file.

Configuration Table.

On the user parameter configuration table, it is possible to define several attributes to the parameters, such as
description, minimum and maximum values, unit, digits, data type, etc.

NOTE!
These settings will be automatically displayed in the parameter table. However, to be sent to the
device, you need to download the resource.

Equipments (Devices)

WPS v2.5X | 646

Table fields:

Parameter: User parameter identification.

Description: Description of the user parameter in the parameter table. On devices that have text-based
HMIs, the description is sent to the machine and displayed on the HMI.

Minimum: Minimum input value for parameter.

Maximum: Maximum input value for parameter.

Unit: Unit displayed on the device's HMI.

Default: Value loaded when restore factory default is selected.

Retentive: Retain value after rebooting devices.

Hexadecimal: Displays the value in hexadecimal.

Digits: Number of decimal digits for displaying value.

Datatype: Parameter datatype used by the ladder application.

Password: Enables password request by changing parameter value.

Equipments (Devices)

WPS v2.5X | 647

Read only: It does not allow the writing of values in the parameter by the communication network or the HMI.
Writing is done only by the ladder application.

Display HMI: Displays the parameter in the HMI.

Performs modification: Confirmation options when changing the parameter:
o No confirmation: Does not prompt for confirmation when changing parameter.
o With confirmation and engine stopped: Request confirmation and allow change only with engine stopped.
o With confirmation: Prompt for confirmation when changing parameter.

Stopped motor: Perform change only with motor stopped.

Help: On devices that have text-based HMI, you can edit a help text for the parameter.

View the user parameter

In the parameter table, the user parameters will be shown as they are configured on the configuration screen.

11.4 CFW501

Enter topic text here.

11.4.1 Description

Equipments (Devices)

WPS v2.5X | 648

With a modern design and power range of 0.25 to 30 hp, the CFW501 is a high-performance variable speed
drive that assists in the speed and torque control of three-phase induction motors. The device also features
sensorless vector, vector encoder or scalar, SoftPLC, which adds functions of PLC (Programmable Logic
Controller), Pump Genius, which features dedicated functions for pumping and selectable plug-in modules,
which provide a flexible and optimized for any application.

Refer to the user's manual of the CFW501 for further details about the product.

NOTE!

This product does not have the Ladder tool available in WPS.
You can use the WLP application if this feature is required.

11.4.2 Parameters

11.4.2.1 Overview

The parameter configuration screen is used to configure and monitor all the parameters of the equipment,
including the user parameters.

NOTE!
The reading and writing of such parameters is done on this screen; only the user parameter
configuration must be sent the first time or whenever modified by means of the resource
download routine.

Below is an overview of the parameter configuration screen.

Equipments (Devices)

WPS v2.5X | 649

1. Parameter files. In this part are all the parameter configuration files created by the user. Notice that when
the file features a person figure on the table, it means this parameter table contains hidden parameters/
group of parameters.

2. Group of parameters. This tree shows all the group of parameters. Notice that the same parameter can be
in more than one group, and when its value is modified, it will be modified in all the groups to which it
belongs.

3. Modified group of parameters. Group of parameters which contain the figure of a person on the table
means they have hidden parameters.

4. Commands. The commands are described below in the order they appear:
4.1.Unhide parameter: In case some parameter has been hidden, this button allows making it visible

again.
4.2.Hide parameter: Just select one or more parameters on the table and trigger this command to hide

them.
4.3.Save table: It saves the values of the parameters shown on the equipment screen; the sent values are

the ones in the User column. The flow is User -> Monitored (equipment)
4.4.Read table: It reads the parameters of the equipment shown in the Monitored column and saves them

in the parameter file in the User column. The flow is Monitored (equipment) -> User
4.5.User parameters: It opens a screen to edit the user parameters.
4.6.Filter: It opens a parameter filter option, and it can filter by parameter number or description.
4.7.User Parameters and Monitored Parameters. These two columns show the off-line and on-line

parameters, so to speak. The User column shows the values contained in the file located on the
computer and the Monitored column shows the values that are effectively saved on the equipment.
Whenever you use the Save Parameter option, the sent values will be from the User column to the
Monitored column, that is, File -> Equipment. In case of reading, the flow is the opposite, from the
Monitored column to the User column, that is, Equipment -> File. In case you wish to change the
values directly on the equipment without changing it in the file, just click on the monitored column,

Equipments (Devices)

WPS v2.5X | 650

change the values and the modification will occur on-line.
5. Modified parameters: Whenever a parameter value in the User column is different from the Monitored

column, it will be shown in red.
6. Output. This screen shows error information in case they occur during the writing or reading of the

parameters.

11.4.2.2 Configuration

Below is the list of the required steps to create a parameter file.

1. Create a new parameter file.

2. Define a name for the parameter file

3. Configure which parameters you wish to view in your parameter table

Equipments (Devices)

WPS v2.5X | 651

4. After performing the steps above, the parameter file will be created and the equipment can be
parameterized.

Equipments (Devices)

WPS v2.5X | 652

11.4.2.3 Read and Write of Parameters

There are 3 (three) ways to do the reading and writing of the parameters: by means of table, selection and
group.

1. Table writing. The table writing command will send all visible parameters on the equipment screen. If and
error occurs during the sending of some specific parameter, a message will be shown on the output window
informing the error. It is important to notice that only visible parameters will be sent; therefore, it is necessary
attention to which node of the group of parameters tree you are viewing. Example: If you wish to write all of
them without filtering per group, just select the tree root.

Equipments (Devices)

WPS v2.5X | 653

2. Table reading. The table reading command will read all the parameters of the equipment. If a error occurs
during the reading of some specific parameter, a message will be shown on the output window informing the
error. It is important to notice that only visible parameters will be read; therefore, it is necessary attention to
which node of the group of parameters tree you are viewing. Example: If you wish to read all of them without
filtering per group, just select the tree root.

Equipments (Devices)

WPS v2.5X | 654

3. Reading/writing of specific parameters. In order to read/write one or more specific parameters, just
select them on the table, right click and choose the desired option: read or write parameter.

4. Reading/writing of group of parameters. In order to read/write only one group of parameters, just select
it on the group tree, right click and choose the desired option: read or write group.

Equipments (Devices)

WPS v2.5X | 655

11.4.2.4 Hide/Unhide Parameters and Group of Parameters

The parameter can be hidden/unhidden in two ways: individually or in group.

1. Hide parameters. In order to hide a parameter individually, just right click on the desired parameters and
select the Hide Parameter option. You can also press the Delete key.

2. Unhide Parameters. In order to show hidden parameters, right click and choose the Unhide Parameters

Equipments (Devices)

WPS v2.5X | 656

or press the Insert key. Then, a window will open and show the hidden parameters. Now, you just have to
select the desired parameters and confirm.
Note: The parameters shown on this new window are only those which belong to the current filter according to
the selection on the parameter group tree. In the figures below, the CAN group is selected; that means that
only the hidden parameters of this group will be shown.

Equipments (Devices)

WPS v2.5X | 657

Equipments (Devices)

WPS v2.5X | 658

3. Hide Group of Parameters. In order to hide a group of parameters, just select the group on the tree and
use the Hide Group option.

Equipments (Devices)

WPS v2.5X | 659

Equipments (Devices)

WPS v2.5X | 660

4. Unhide Group of Parameters. In order to show a hidden group of parameters, just select the root of the
group tree and select the Unhide Group option. A window will open showing the groups that are hidden; then
just select the group you wish to unhide.

Equipments (Devices)

WPS v2.5X | 661

Equipments (Devices)

WPS v2.5X | 662

Equipments (Devices)

WPS v2.5X | 663

5. Hide and Show Parameters and Groups of Parameters. By means of this option, you have full control
of the parameters and groups of parameters. It is possible to hide and unhide individual parameters, multiple
parameters, individual groups and multiple groups in the same action.

Equipments (Devices)

WPS v2.5X | 664

Equipments (Devices)

WPS v2.5X | 665

11.4.2.5 User Parameters

In order to open the configuration screen of the user parameters, just click on the User Parameters option on
the Parameter node of the project tree or click on the icon indicated on the tool bar of the parameter file.

Configuration Table.

On the user parameter configuration table, it is possible to define several attributes to the parameters, such as
description, minimum and maximum values, unit, digits, data type, etc.

NOTE!
These settings will be automatically displayed in the parameter table. However, to be sent to the
device, you need to download the resource.

Equipments (Devices)

WPS v2.5X | 666

Table fields:

Parameter: User parameter identification.

Description: Description of the user parameter in the parameter table. On devices that have text-based
HMIs, the description is sent to the machine and displayed on the HMI.

Minimum: Minimum input value for parameter.

Maximum: Maximum input value for parameter.

Unit: Unit displayed on the device's HMI.

Default: Value loaded when restore factory default is selected.

Retentive: Retain value after rebooting devices.

Hexadecimal: Displays the value in hexadecimal.

Digits: Number of decimal digits for displaying value.

Datatype: Parameter datatype used by the ladder application.

Password: Enables password request by changing parameter value.

Equipments (Devices)

WPS v2.5X | 667

Read only: It does not allow the writing of values in the parameter by the communication network or the HMI.
Writing is done only by the ladder application.

Display HMI: Displays the parameter in the HMI.

Performs modification: Confirmation options when changing the parameter:
o No confirmation: Does not prompt for confirmation when changing parameter.
o With confirmation and engine stopped: Request confirmation and allow change only with engine stopped.
o With confirmation: Prompt for confirmation when changing parameter.

Stopped motor: Perform change only with motor stopped.

Help: On devices that have text-based HMI, you can edit a help text for the parameter.

View the user parameter

In the parameter table, the user parameters will be shown as they are configured on the configuration screen.

11.5 CFW-11

Enter topic text here.

11.5.1 Description

Equipments (Devices)

WPS v2.5X | 668

Refer to the user's manual of the CFW-11 for further details about the product.

NOTE!

This product does not have the Ladder tool available in WPS.
You can use the WLP application if this feature is required.

11.5.2 Parameters

11.5.2.1 Overview

The parameter configuration screen is used to configure and monitor all the parameters of the equipment,
including the user parameters.

NOTE!
The reading and writing of such parameters is done on this screen; only the user parameter
configuration must be sent the first time or whenever modified by means of the resource
download routine.

Below is an overview of the parameter configuration screen.

Equipments (Devices)

WPS v2.5X | 669

1. Parameter files. In this part are all the parameter configuration files created by the user. Notice that when
the file features a person figure on the table, it means this parameter table contains hidden parameters/
group of parameters.

2. Group of parameters. This tree shows all the group of parameters. Notice that the same parameter can be
in more than one group, and when its value is modified, it will be modified in all the groups to which it
belongs.

3. Modified group of parameters. Group of parameters which contain the figure of a person on the table
means they have hidden parameters.

4. Commands. The commands are described below in the order they appear:
4.1.Unhide parameter: In case some parameter has been hidden, this button allows making it visible

again.
4.2.Hide parameter: Just select one or more parameters on the table and trigger this command to hide

them.
4.3.Save table: It saves the values of the parameters shown on the equipment screen; the sent values are

the ones in the User column. The flow is User -> Monitored (equipment)
4.4.Read table: It reads the parameters of the equipment shown in the Monitored column and saves them

in the parameter file in the User column. The flow is Monitored (equipment) -> User
4.5.User parameters: It opens a screen to edit the user parameters.
4.6.Filter: It opens a parameter filter option, and it can filter by parameter number or description.
4.7.User Parameters and Monitored Parameters. These two columns show the off-line and on-line

parameters, so to speak. The User column shows the values contained in the file located on the
computer and the Monitored column shows the values that are effectively saved on the equipment.
Whenever you use the Save Parameter option, the sent values will be from the User column to the
Monitored column, that is, File -> Equipment. In case of reading, the flow is the opposite, from the
Monitored column to the User column, that is, Equipment -> File. In case you wish to change the
values directly on the equipment without changing it in the file, just click on the monitored column,
change the values and the modification will occur on-line.

5. Modified parameters: Whenever a parameter value in the User column is different from the Monitored
column, it will be shown in red.

6. Output. This screen shows error information in case they occur during the writing or reading of the
parameters.

11.5.2.2 Configuration

Below is the list of the required steps to create a parameter file.

1. Create a new parameter file.

2. Define a name for the parameter file

Equipments (Devices)

WPS v2.5X | 670

3. Configure which parameters you wish to view in your parameter table

Equipments (Devices)

WPS v2.5X | 671

4. After performing the steps above, the parameter file will be created and the equipment can be
parameterized.

Equipments (Devices)

WPS v2.5X | 672

11.5.2.3 Read and Write of Parameters

There are 3 (three) ways to do the reading and writing of the parameters: by means of table, selection and
group.

1. Table writing. The table writing command will send all visible parameters on the equipment screen. If and
error occurs during the sending of some specific parameter, a message will be shown on the output window
informing the error. It is important to notice that only visible parameters will be sent; therefore, it is necessary
attention to which node of the group of parameters tree you are viewing. Example: If you wish to write all of
them without filtering per group, just select the tree root.

Equipments (Devices)

WPS v2.5X | 673

2. Table reading. The table reading command will read all the parameters of the equipment. If a error occurs
during the reading of some specific parameter, a message will be shown on the output window informing the
error. It is important to notice that only visible parameters will be read; therefore, it is necessary attention to
which node of the group of parameters tree you are viewing. Example: If you wish to read all of them without
filtering per group, just select the tree root.

Equipments (Devices)

WPS v2.5X | 674

3. Reading/writing of specific parameters. In order to read/write one or more specific parameters, just
select them on the table, right click and choose the desired option: read or write parameter.

4. Reading/writing of group of parameters. In order to read/write only one group of parameters, just select
it on the group tree, right click and choose the desired option: read or write group.

Equipments (Devices)

WPS v2.5X | 675

11.5.2.4 Hide/Unhide Parameters and Group of Parameters

The parameter can be hidden/unhidden in two ways: individually or in group.

1. Hide parameters. In order to hide a parameter individually, just right click on the desired parameters and
select the Hide Parameter option. You can also press the Delete key.

2. Unhide Parameters. In order to show hidden parameters, right click and choose the Unhide Parameters

Equipments (Devices)

WPS v2.5X | 676

or press the Insert key. Then, a window will open and show the hidden parameters. Now, you just have to
select the desired parameters and confirm.
Note: The parameters shown on this new window are only those which belong to the current filter according to
the selection on the parameter group tree. In the figures below, the CAN group is selected; that means that
only the hidden parameters of this group will be shown.

Equipments (Devices)

WPS v2.5X | 677

Equipments (Devices)

WPS v2.5X | 678

3. Hide Group of Parameters. In order to hide a group of parameters, just select the group on the tree and
use the Hide Group option.

Equipments (Devices)

WPS v2.5X | 679

Equipments (Devices)

WPS v2.5X | 680

4. Unhide Group of Parameters. In order to show a hidden group of parameters, just select the root of the
group tree and select the Unhide Group option. A window will open showing the groups that are hidden; then
just select the group you wish to unhide.

Equipments (Devices)

WPS v2.5X | 681

Equipments (Devices)

WPS v2.5X | 682

Equipments (Devices)

WPS v2.5X | 683

5. Hide and Show Parameters and Groups of Parameters. By means of this option, you have full control
of the parameters and groups of parameters. It is possible to hide and unhide individual parameters, multiple
parameters, individual groups and multiple groups in the same action.

Equipments (Devices)

WPS v2.5X | 684

Equipments (Devices)

WPS v2.5X | 685

11.5.2.5 User Parameters

In order to open the configuration screen of the user parameters, just click on the User Parameters option on
the Parameter node of the project tree or click on the icon indicated on the tool bar of the parameter file.

Configuration Table.

On the user parameter configuration table, it is possible to define several attributes to the parameters, such as
description, minimum and maximum values, unit, digits, data type, etc.

NOTE!
These settings will be automatically displayed in the parameter table. However, to be sent to the
device, you need to download the resource.

Equipments (Devices)

WPS v2.5X | 686

Table fields:

Parameter: User parameter identification.

Description: Description of the user parameter in the parameter table. On devices that have text-based
HMIs, the description is sent to the machine and displayed on the HMI.

Minimum: Minimum input value for parameter.

Maximum: Maximum input value for parameter.

Unit: Unit displayed on the device's HMI.

Default: Value loaded when restore factory default is selected.

Retentive: Retain value after rebooting devices.

Hexadecimal: Displays the value in hexadecimal.

Digits: Number of decimal digits for displaying value.

Datatype: Parameter datatype used by the ladder application.

Password: Enables password request by changing parameter value.

Equipments (Devices)

WPS v2.5X | 687

Read only: It does not allow the writing of values in the parameter by the communication network or the HMI.
Writing is done only by the ladder application.

Display HMI: Displays the parameter in the HMI.

Performs modification: Confirmation options when changing the parameter:
o No confirmation: Does not prompt for confirmation when changing parameter.
o With confirmation and engine stopped: Request confirmation and allow change only with engine stopped.
o With confirmation: Prompt for confirmation when changing parameter.

Stopped motor: Perform change only with motor stopped.

Help: On devices that have text-based HMI, you can edit a help text for the parameter.

View the user parameter

In the parameter table, the user parameters will be shown as they are configured on the configuration screen.

11.5.3 Diagnostic

11.5.3.1 Trace

11.5.3.1.1 Overview

The trace function is used to register variables* of interest of the device (such as current, voltage, speed, etc.)
when a certain event occurs in the system. Since it triggers the storage of the variables, in the system this

Equipments (Devices)

WPS v2.5X | 688

event is called trigger, and the user can define up to three trigger conditions and the logic to be used in them
(AND or OR logic).
The stored variables can be seen as graphics by using the WPS running on a PC connected via USB or via
serial to the device.

NOTE: Up to 6 (six) channels using SCA06; Up to 4 (four) channels using CFW-11.

Below is an overview of the configuration screen of the trace function (example using SCA06).

1. Graphic Zoom. This bar contains the options to control the graphic, such as export to image file, zoom in,
zoom out, set width, set height, se all and show or not show the graphic lettering.

2. Trace Status. This item shows the present status of the trace function: not started, trigger occurred and
concluded.

3. Parameters. In this part are all the parameters that can be configured in the trace routine, such as triggers,
conditions, channels to be monitored and sampling period.

4. Graphic. In this area is the graphic after the conclusion of trace. In the lower part is the time line and on the
right are the values separated by unit of measurement.

5. Markers. The markers are within the graphic area. After the graphic is set, just click on the black marker to
create red markers (fixed). It is possible to add two fixed markers. Those fixed markers are used to
calculate the average and effective values between the two points.

6. Trace command. Below is the description of the command functions:
6.1.Read configuration: It reads the trace configuration parameters and updates the parameters on the

screen (item 3).
6.2.Save configuration: It sends the trace configuration parameters (item 3) to the equipment.

Equipments (Devices)

WPS v2.5X | 689

6.3.Read Data: Command used only when the trace status is concluded, that is, there is already a
concluded trace on the equipment, and you just wish to download the data without starting a new trace.

6.4.Force Trigger: Forces the trigger regardless the conditions.
6.5.Start Trace: It starts the trace function.

7. Channel Table. This table shows the data of the chosen channels, besides the possibility to hide
channels (Visible), change the channel color (Color) and set the graphic limits per unit of measurement
(Maximum).

11.5.3.1.2 Configuration

Below is a list of the necessary steps to create a trace configuration:

1. Creation of a new trace file.

Equipments (Devices)

WPS v2.5X | 690

2. After the creation of the trace file, it is necessary to set the desired configurations in the part of parameters.

Equipments (Devices)

WPS v2.5X | 691

3. After making the desired configurations, just click on save configuration to send them to the equipment.
Notice that it is necessary to be connected to the equipment with the option Connect Device of the WPS.

Equipments (Devices)

WPS v2.5X | 692

4. After the configurations are saved, just click on Start Trace. Notice that the status of the trace function
changed to Waiting, that is, the tool is now waiting for the trigger execution to set the graphic and show the
trace values.

Equipments (Devices)

WPS v2.5X | 693

5. After trigger occurs, the graphic and the values will be shown in the table and the trace function status will
be Concluded.

Equipments (Devices)

WPS v2.5X | 694

6. If you wish, you can click on the black cursor of the graphic and add fixed cursors so that the calculation of
the average and effective values will be performed for the channels in the defined ranges.

Equipments (Devices)

WPS v2.5X | 695

11.6 LDW900

11.6.1 Description

The LDW900 is a high performance product directed to the lifts market for speed control, torque and PM motor
position of sinusoidal alternating current.

Its main feature is the energy regeneration option to the power grid at the time of engine braking, reducing the
consumption of electricity.

Another feature of the product is the high performance and precision control of motor shaft movement due to
operation in closed loop through position feedback provided by an encoder.

It has operator interface with six-digit LED's display for control, adjustment and display of all parameters,
connected to expansion accessories, PLC function, positioning blocks, free programming software and
CANopen communication included in the standard product.

Refer to the user manual and LDW900 programming manual for more information about the product.

Equipments (Devices)

WPS v2.5X | 696

11.6.2 System Markers

The following variables contained in the GLOBAL_SYSTEM group of the variables table, have the fixed tag.
The tag of system markers were divided into groups and subgroups, where:

Groups:
LDW: reading and writing variables of the LDW900 lift drive;
CO: reading and writing variables of the CANopen network.

Subgroups:
STS: reading variable (status);
CMD: writing variable (command).

Reading System Markers (Status)

Equipments (Devices)

WPS v2.5X | 697

Address Bit Modbus Tag Description

Ladder

%SB6000 0 0 FREQ_2HZ Oscillator w ith frequency of 2 Hz

%SB6000 1 1 PULSE_1SCAN Pulse during the f irst scan cycle

%SB6000 2 2 FALSE Alw ays in 0

%SB6000 3 3 TRUE Alw ays in 1

%SW6002 -- 3001 ELAPSED_SCAN_CYCLES Elapsed scan cycles

Real Axis

%SW6004 -- 3002 LDW_STS_REAL_AXIS_STATUS Real axis status (see note)

%SD6008 -- 3004 LDW_STS_REAL_AXIS_VELOCITY Real axis velocity

%SL6024 -- 3012 LDW_STS_REAL_AXIS_POSITION Real axis position

Virtual Axis

%SW6006 -- 3003 LDW_STS_VIRTUAL_AXIS_STATUS Virtual axis status (see note)

%SD6012 -- 3006 LDW_STS_VIRTUAL_AXIS_VELOCITY Virtual axis velocity

%SL6032 -- 3016 LDW_STS_VIRTUAL_AXIS_POSITION Virtual axis position

Current

%SD6016 -- 3008 LDW_STS_MOTOR_CURRENT Motor current

Position in the DÍ s transition

%SD6040 -- 3020 LDW_STS_DI1_POSITION_STORED Position stored in the DI1 transition

%SD6048 -- 3024 LDW_STS_DI2_POSITION_STORED Position stored in the DI2 transition

%SD6056 -- 3028 LDW_STS_DI3_POSITION_STORED Position stored in the DI3 transition

Counters

%SD6064 -- 3032 LDW_STS_BUILT_IN_COUNTER Built-in counter value

%SD6068 -- 3034 LDW_STS_BUILT_IN_COUNTER_DI3 Built-in counter stored in the DI3 transition

%SD6072 -- 3036 LDW_STS_ENC1_COUNTER Encoder 1 counter value

%SD6076 -- 3038 LDW_STS_ENC2_COUNTER Encoder 2 counter value

%SD6080 -- 3040 LDW_STS_ENC_COUNTER_Z1
Encoder counter stored in the Z1 transition as defined in

P00511

%SD6084 -- 3042 LDW_STS_ENC_COUNTER_Z2
Encoder counter stored in the Z2 transition as defined in

P00521

CANopen

%SB6100 0 800 CO_STS_MASTER_CONTACTED The CANopen master contacted all the slaves

%SB6100 1 801 CO_STS_MASTER_CONFIG_OK
The CANopen master dow nloaded the configurations of

the slaves

%SB6100 2 802 CO_STS_MASTER_ERROR_CTRL_OK
Error control protocol (node guarding/heartbeat) initiated

w ith the slaves

%SB6100 3 803 CO_STS_MASTER_INIT_FINISHED The CANopen master initialized all the slaves

%SB6100 4 804 CO_STS_MASTER_INIT_ERROR A slave presented an initialization error

%SB6100 5 805 CO_STS_MASTER_ERROR_CTRL
The CANopen master detected a fault in a slave through

the error detection protocol

%SB6100 6 806 CO_STS_MASTER_EMCY A slave reported EMCY

%SB6101 0 808 CO_STS_MASTER_NMT_TOGGLE NMT command toggle bit feedback

%SB6101 5 813 CO_STS_MASTER_BUS_OFF The CANopen master is in bus off

%SB6101 6 814 CO_STS_MASTER_POWER_OFF
The CANopen master has no pow er supply at the CAN

interface

%SB6101 7 815 CO_STS_MASTER_COMM_DISABLED Disabled CANopen master communication

%SB6102 0 816 CO_STS_SLAVE1_CONTACTED
The CANopen master successfully contacted the slave in

the indicated address

%SB6102 1 817 CO_STS_SLAVE1_CONFIG_OK The CANopen master successfully configured the slave

%SB6102 2 818 CO_STS_SLAVE1_ERROR_CTRL_OK
Error control protocol (node guarding/heartbeat) initiated

w ith the slave

%SB6102 3 819 CO_STS_SLAVE1_INIT_FINISHED Concluded slave initialization

%SB6102 4 820 CO_STS_SLAVE1_INIT_ERROR Initialization error in the indicated address slave

%SB6102 5 821 CO_STS_SLAVE1_ERROR_CTRL_FAIL
Fault detected in some slave from the CANopen master

error detection protocol

%SB6102 6 822 CO_STS_SLAVE1_EMCY The slave in the indicated address reported EMCY error

%SB6104 0 832 CO_STS_SLAVE2_CONTACTED
The CANopen master successfully contacted the slave in

the indicated address

%SB6104 1 833 CO_STS_SLAVE2_CONFIG_OK The CANopen master successfully configured the slave

%SB6104 2 834 CO_STS_SLAVE2_ERROR_CTRL_OK
Error control protocol (node guarding/heartbeat) initiated

w ith the slave

%SB6104 3 835 CO_STS_SLAVE2_INIT_FINISHED Concluded slave initialization

%SB6104 4 836 CO_STS_SLAVE2_INIT_ERROR Initialization error in the indicated address slave

%SB6104 5 837 CO_STS_SLAVE2_ERROR_CTRL_FAIL
Fault detected in some slave from the CANopen master

error detection protocol

%SB6104 6 838 CO_STS_SLAVE2_EMCY The slave in the indicated address reported EMCY error

...

%SB6354 0 2832 CO_STS_SLAVE127_CONTACTED
The CANopen master successfully contacted the slave in

the indicated address

%SB6354 1 2833 CO_STS_SLAVE127_CONFIG_OK The CANopen master successfully configured the slave

%SB6354 2 2834 CO_STS_SLAVE127_ERROR_CTRL_OK
Error control protocol (node guarding/heartbeat) initiated

w ith the slave

%SB6354 3 8235 CO_STS_SLAVE127_INIT_FINISHED Concluded slave initialization

%SB6354 4 2836 CO_STS_SLAVE127_INIT_ERROR Initialization error in the indicated address slave

%SB6354 5 2837 CO_STS_SLAVE127_ERROR_CTRL_FAIL
Fault detected in some slave from the CANopen master

error detection protocol

%SB6354 6 2838 CO_STS_SLAVE127_EMCY The slave in the indicated address reported EMCY error

%SW6360 -- 3180 CO_SDO_ERROR_NODE_ID
SDO error: address of the slave w ith the last detected

SDO error

%SW6362 -- 3181 CO_SDO_ERROR_OBJECT_INDEX SDO error: object index

%SW6364 -- 3182 CO_SDO_ERROR_OBJECT_SUBINDEX SDO error: object sub-index

%SW6366 -- 3183 CO_SDO_ERROR_FUNCTION SDO error: function (w riting/reading)

%SD6368 -- 3184 CO_SDO_ERROR_VALUE SDO error: value

%SD6372 -- 3186 CO_SDO_ERROR_CODE SDO error: error code

%SB6380 -- 3190 CO_EMCY_SLAVE_ID Last reported EMCY: slave address

%SB6382 -- 3191 CO_EMCY_DATA Last reported EMCY: object data

Equipments (Devices)

WPS v2.5X | 698

Writing / Reading System Markers (Command)

Address Bit Modbus Tag Description

CANopen

%CB6000 -- 3000 CO_CMD_NMT_COMMAND
NMT command transmission by the CANopen master:

command code

%CB6001 0 8 CO_CMD_NMT_TOGGLE NMT command transmission by the CANopen master: toggle bit

%CB6001 7 15 CO_CMD_DISABLE Disables the CANopen communication

%CB6002 -- 3001 CO_CMD_NMT_SLAVE_ADDR
NMT command transmission by the CANopen master: slave

address

NOTE!
Below description of the real axis and virtual status:

0. Disabled.
1. Errorstop.
2. Standstill.
3. Stopping.
4. Homing.
5. Continuous Motion.
6. Discrete Motion.
7. Synchronized Motion.

Equipments (Devices)

WPS v2.5X | 699

Note 1: When the drive is in "Stopping" on "Errorstop" every block can be called, but only MC_Reset block is
executed;
Note 2: Attempt to enable the drive, but the drive is in fault;
Note 3: Enabling the drive and the drive is not in fault;
Note 4: MC_Stop.Done is true and MC_Stop.Execute is false;
Note 5: MC_StepDirect, MC_StepRefPulse or MC_FinishHoming.

11.6.3 Oriented Start-Up

The function Oriented Start-Up is utilized to realize the minimal required configuration to put SCA-06 into
operation.

Equipments (Devices)

WPS v2.5X | 700

The Oriented Start-Up can be executed during the resource creation, or throught the context menu off the
resource by selecting the option Oriented Start-Up.

1. On the Start-Up screen the main options that require configuration are the parameters P385 (Servomotor
Model) and P202 (Operation Mode).

Equipments (Devices)

WPS v2.5X | 701

2. According to the operation mode selected the configurator will be adjusted enabling or disabling other
options, below is a example of the options enabled when the operation mode is 5 - CANopen.

3. After the definition of the operation mode and other options, is only necessary to click on Execute Start-Up
, if it is executed properly a message informing success will be displayed otherwise a message informing

Equipments (Devices)

WPS v2.5X | 702

fail will be displayed.

4. After the successfull execution of the Start-Up during the resource creation, the system will enable a step

Equipments (Devices)

WPS v2.5X | 703

named Auto-Tuning in the wizard, this step is up to the user to perform or not.

11.6.4 Auto-Tuning

The function Auto-Tuning is utilized to realize automatic adjusts on SCA-06 to obtain a better performance of
the equipment.

The Auto-Tuning can be executed during the resource creation, or throught the resource context menu by
selecting the option Auto-Tuning.

Equipments (Devices)

WPS v2.5X | 704

1. On the Auto-Tuning screen the options that require configuration are P582 (Rotation Direction) and if the
user program should be stopped before execution and started again after the Auto-Tuning conclusion.

Equipments (Devices)

WPS v2.5X | 705

2. After choosing the options is only necessary to click on Execute Auto-Tuning to start the process that
takes less than a minute. if it is executed properly a message informing success will be displayed
otherwise a message informing fail will be displayed.

11.6.5 Import from WLP

The function import from WLP is utilized to import Ladder developed on WLP software to equipment (device).

The import from WLP can be executed during the resource creation.

Equipments (Devices)

WPS v2.5X | 706

1. To execute the import WLP function click the Import from WLP button and select the WLP project folder or
the WLP BKP file.

Equipments (Devices)

WPS v2.5X | 707

Equipments (Devices)

WPS v2.5X | 708

2. After import from WLP completed successfully click the Finish button to copy the imported files to new
resource.

11.6.8 Cam Profiles

It allows loading and editing the cam table of the CAM curves.
Accessed by the CAM Profile List command with the right button of the mouse in the CAM Profiles folder of
the resource.

Equipments (Devices)

WPS v2.5X | 709

Description

The cam tables from 1 to 10 are tables of fixed points, which are transmitted at the moment of the download of
the application. In order to use the tables 1 to 10, first the MC_CamTableSelect block must be executed with
the desired table and then the MC_CamIn block.
The cam tables 11 to 20 are tables of variable points. In order to use the tables 11 to 20, first the
MC_CamCalc block must be executed with the desired table and then the MC_CamIn block.

For the SCA06 equipment, it is allowed programming at most 200 fixed points and 100 variable points, seeing
that the maximum number of variable points of each table must be configured in the Max Points column, as
shown below:

Equipments (Devices)

WPS v2.5X | 710

In order to edit the cam table, click on the Edit button, and the cam profile editor will open, as in the figure
below:

Equipments (Devices)

WPS v2.5X | 711

This window has the following controls:

Cam table:

NOTE!
The CAM block is always relative, so the first point of the cam table will always be master= 0 and
slave = 0.

Graphic of the profile:

Equipments (Devices)

WPS v2.5X | 712

Graphic control tools:

Values of the cursor:
Values relative to the selected point of the cursor.

Master speed:
Speed used to calculate the speed, acceleration and jerk of the slave.

Equipments (Devices)

WPS v2.5X | 713

NOTE!
The speed, acceleration and jerk of the slave must be used as reference to develop the cam
profile, where they are calculated numerically, not taking into account load, inertia, torque and
dynamics of the drive.

Adding a new point to the cam profile

A point can be added by means of the add or insert point buttons or by double clicking the graphic in the
position where you wish to add the point. You can double click any region of the graphic. In case an
interpolation already exists in this region, the editor will insert this point between the two points of the
interpolation.
The point is always added as linear interpolation.
When a point is added or inserted by means of the respective buttons, the master and slave values come
zeroed. In case of point insertion, that may cause an interruption of the profile, because the master position
must always grow in relation to the origin; therefore, the value of the master and slave must be edited by
clicking on their cells in the cam table.
On the figure below, a point was inserted by double clicking:

In order to change the type of interpolation, click on the type cell in the line corresponding to the origin of the
interpolation and select the desired type.
In the figure below, the point was changed for cubic interpolation.

Equipments (Devices)

WPS v2.5X | 714

Now, in this curve, it is already possible to see other magnitudes besides the position, such as speed,
acceleration and jerk. For a better view of all magnitudes, we can use the Set Zoom All button according to
the figure below.

The same way, we can choose one of the magnitudes and use the Apply Selected Zoom button. In the
example below, a zoom was applied to the speed.

Equipments (Devices)

WPS v2.5X | 715

Another interesting tool is the cursor. In the example below, we will place the cursor in point of maximum
speed.

You must bear in mind that the speed, acceleration and jerk of the slave depend on the master speed;
therefore, it is interesting to change them so as to simulate something really close to the effective values. In
the figure below, the master speed will be changed to 1000 rpm and we will analyze the same position of the
cursor.

Equipments (Devices)

WPS v2.5X | 716

During the project of the cam profile, all those magnitudes must be observed, because they may be
accomplished or not due to mechanical, electrical and electronic limitations of the involved equipment.

Since the acceleration and jerk graphics are calculated taking into account the interpolation between two
points, the acceleration and jerk will be shown as equal to zero in the junctions between linear interpolations.
Although in theory we know that in a speed step the acceleration and jerk are infinite, in practice the
acceleration and jerk at this moment will also depend on the mechanical, electrical and electronic limitations
of the involved equipment. Those speed steps must be observed and considered in the project of the cam
profile. The figure below shows an example of this situation.

The CAM block offers two types of interpolation: linear and cubic. The following equations are used:

Linear:

Equipments (Devices)

WPS v2.5X | 717

Cubic:

where:
pe = slave position
ve = slave speed
ae = slave acceleration
je = slave jerk
pm = master position
vm = master speed
pim = master initial position
pfm = master final position
pie = slave initial position
pfe = slave final position
a = coefficient calculated by the CAM editor
b = coefficient calculated by the CAM editor
c = coefficient calculated by the CAM editor

Changing a point in the cam profile

A point can be changed by means of the cam table by using direct edition or moving the point in the graphic.
In order to move the point in the graphic, place the cursor on the point, which is marked with a red square,
click and hold it, and drag it to the new position.
When you click on the point, the cam table will move to this point, selecting the related cell.
The operation of moving the point in the graphic is interactive and calculates all the profile each time the point
is changed. The new point can be seen in the cam table.

Removing a point from the cam profile

The point is removed directly in the cam table. In order to do so, select one of the cells referring to the point
and click on the Remove Point button.

Zoom of a certain area of the graphic

Click on one of the corners of the region you wish to zoom and hold it, and move the mouse so as to mark a
region. Then a rectangle will show on the graphic; release the button. The figure below shows an example of
this zoom.

Equipments (Devices)

WPS v2.5X | 718

Graphic menu

In order to access the graphic menu, right click on the graphic area, and the following menu will show.

The figure below shows the graphic property box.

Equipments (Devices)

WPS v2.5X | 719

11.6.9 Structures

Structure is a data grouping used to define a recipe or an object.

In the Ladder program, it is possible to create variables of the structure type and use them in the blocks. To
access the internal members of the structure, the '.' is used followed by its respective member.

Creating a structure

1. With the right button of the mouse on the folder Structure, click on New file.

Equipments (Devices)

WPS v2.5X | 720

Figure 1: Creating a structure

2. Define the file name and press the Next button.

Figure 2: Defining the structure name

3. Configure the structure using the buttons presented in the figure below.

Equipments (Devices)

WPS v2.5X | 721

Figure 3: Editing the Structure

4. After finishing the edition of the structure, click on the button Finish.

Figure 4: Structure created in the project

Equipments (Devices)

WPS v2.5X | 722

Editing a structure

Just double click on the desired structure, as shown in figure 4, and a window will open as shown in figure 3,
allowing to insert new data, erase or move the position of the data.

11.7 MW500

11.7.1 Description

The MW500 is a high-performance variable speed drive for controlling three-phase induction motors with
dedicated functions and high degree of protection IP66 / NEMA4X that allow their use in applications requiring
a high level of precision and robustness. In addition, the MW500 has excellent flexibility because it can be
installed directly on the wall or mounted on the motor, reducing costs of wiring and panels.

Refer to the user's manual of the MW500 for further details about the product.

NOTE!

This product does not have the Ladder tool available in WPS.
You can use the WLP application if this feature is required.

11.7.2 Parameters

11.7.2.2 Configuration

11.7.2.2 Configuration

Below is the list of the required steps to create a parameter file.

1. Create a new parameter file.

2. Define a name for the parameter file

Equipments (Devices)

WPS v2.5X | 723

3. Configure which parameters you wish to view in your parameter table

Equipments (Devices)

WPS v2.5X | 724

4. After performing the steps above, the parameter file will be created and the equipment can be
parameterized.

Equipments (Devices)

WPS v2.5X | 725

11.7.2.3 Read and Write of Parameters

There are 3 (three) ways to do the reading and writing of the parameters: by means of table, selection and
group.

1. Table writing. The table writing command will send all visible parameters on the equipment screen. If and
error occurs during the sending of some specific parameter, a message will be shown on the output window
informing the error. It is important to notice that only visible parameters will be sent; therefore, it is necessary
attention to which node of the group of parameters tree you are viewing. Example: If you wish to write all of
them without filtering per group, just select the tree root.

Equipments (Devices)

WPS v2.5X | 726

2. Table reading. The table reading command will read all the parameters of the equipment. If a error occurs
during the reading of some specific parameter, a message will be shown on the output window informing the
error. It is important to notice that only visible parameters will be read; therefore, it is necessary attention to
which node of the group of parameters tree you are viewing. Example: If you wish to read all of them without
filtering per group, just select the tree root.

Equipments (Devices)

WPS v2.5X | 727

3. Reading/writing of specific parameters. In order to read/write one or more specific parameters, just
select them on the table, right click and choose the desired option: read or write parameter.

4. Reading/writing of group of parameters. In order to read/write only one group of parameters, just select
it on the group tree, right click and choose the desired option: read or write group.

Equipments (Devices)

WPS v2.5X | 728

11.7.2.4 Hide/Unhide Parameters and Group of Parameters

The parameter can be hidden/unhidden in two ways: individually or in group.

1. Hide parameters. In order to hide a parameter individually, just right click on the desired parameters and
select the Hide Parameter option. You can also press the Delete key.

2. Unhide Parameters. In order to show hidden parameters, right click and choose the Unhide Parameters

Equipments (Devices)

WPS v2.5X | 729

or press the Insert key. Then, a window will open and show the hidden parameters. Now, you just have to
select the desired parameters and confirm.
Note: The parameters shown on this new window are only those which belong to the current filter according to
the selection on the parameter group tree. In the figures below, the CAN group is selected; that means that
only the hidden parameters of this group will be shown.

Equipments (Devices)

WPS v2.5X | 730

Equipments (Devices)

WPS v2.5X | 731

3. Hide Group of Parameters. In order to hide a group of parameters, just select the group on the tree and
use the Hide Group option.

Equipments (Devices)

WPS v2.5X | 732

Equipments (Devices)

WPS v2.5X | 733

4. Unhide Group of Parameters. In order to show a hidden group of parameters, just select the root of the
group tree and select the Unhide Group option. A window will open showing the groups that are hidden; then
just select the group you wish to unhide.

Equipments (Devices)

WPS v2.5X | 734

Equipments (Devices)

WPS v2.5X | 735

Equipments (Devices)

WPS v2.5X | 736

5. Hide and Show Parameters and Groups of Parameters. By means of this option, you have full control
of the parameters and groups of parameters. It is possible to hide and unhide individual parameters, multiple
parameters, individual groups and multiple groups in the same action.

Equipments (Devices)

WPS v2.5X | 737

Equipments (Devices)

WPS v2.5X | 738

11.7.2.5 User Parameters

In order to open the configuration screen of the user parameters, just click on the User Parameters option on
the Parameter node of the project tree or click on the icon indicated on the tool bar of the parameter file.

Configuration Table.

On the user parameter configuration table, it is possible to define several attributes to the parameters, such as
description, minimum and maximum values, unit, digits, data type, etc.

NOTE!
These settings will be automatically displayed in the parameter table. However, to be sent to the
device, you need to download the resource.

Equipments (Devices)

WPS v2.5X | 739

Table fields:

Parameter: User parameter identification.

Description: Description of the user parameter in the parameter table. On devices that have text-based
HMIs, the description is sent to the machine and displayed on the HMI.

Minimum: Minimum input value for parameter.

Maximum: Maximum input value for parameter.

Unit: Unit displayed on the device's HMI.

Default: Value loaded when restore factory default is selected.

Retentive: Retain value after rebooting devices.

Hexadecimal: Displays the value in hexadecimal.

Digits: Number of decimal digits for displaying value.

Datatype: Parameter datatype used by the ladder application.

Password: Enables password request by changing parameter value.

Equipments (Devices)

WPS v2.5X | 740

Read only: It does not allow the writing of values in the parameter by the communication network or the HMI.
Writing is done only by the ladder application.

Display HMI: Displays the parameter in the HMI.

Performs modification: Confirmation options when changing the parameter:
o No confirmation: Does not prompt for confirmation when changing parameter.
o With confirmation and engine stopped: Request confirmation and allow change only with engine stopped.
o With confirmation: Prompt for confirmation when changing parameter.

Stopped motor: Perform change only with motor stopped.

Help: On devices that have text-based HMI, you can edit a help text for the parameter.

View the user parameter

In the parameter table, the user parameters will be shown as they are configured on the configuration screen.

11.8 PLC300

11.8.1 Description

PLC300 is a PLC with integrated HMI, developed to meet the need of interface with the user on panels and
machines and at the same time a complete expandable PLC, fast and with several communication ports,
enabling the product to be master of CANopen networks (CAN network) and/or Modbus RTU (RS-485 network)

Equipments (Devices)

WPS v2.5X | 741

as well as Modbus TCP (Ethernet network).

Description of the Models

PLC300 is available in six different models. With our without HMI; standard or plus, and a version with HMI,
though without membrane, in which the user can personalize the PLC appearance following specifications
present in the product CD.

The identification of PLC300 is done by a two or three letter suffix. The letters have the following meaning:
H: HMI
B: Blind (without HMI)
P: Plus
S: Standard
C: Custom (without membrane)

Specif ications PLC300HP PLC300BP PLC300HS PLC300BS PLC300HPC PLC300HSC

Code WEG 12358193 12358194 12358192 12358195 12358196 12358197

IHM

Membrane

Ethernet

Encoder

Expansion

SD Card

CAN

RS 485

RS 232

USB

PWM Output

Digital I/O

Analog I/O

For further details on the product, refer to PLC300 equipment's user manual.

11.8.2 New Features and Corrections

PLC300 V4.11

New Functions:

ARRAY_COPY block;
SCALE block;
Conversion block MUX2;
Conversion block DEMUX2;
Conversion block BYTES_TO_DWORD;
Conversion block DWORD_TO_BYTES;
Conversion block BYTES_TO_WORD;
Conversion block WORD_TO_BYTES;

Equipments (Devices)

WPS v2.5X | 742

Conversion block WORDS_TO_DWORD;
Conversion block DWORD_TO_WORD;
CALL block;
System markers for accessing the function key LEDs F1...F6;
PID2 block;
IMMEDIATE_OUTPUT block also for the expansion modules;
SWAP2 block.

Corrections of functional deviation:

Status LED: In some undesired situation the Status LED was turning red, overwriting the green LED,
signaling PLC without application or stopped;
Numeric input fix: When using decimal places, it was truncating the value rather than rounding it at CAST
time, and it could change the value entered by the user.

PLC300 V3.41

New Functions:

ARRAY_COPY block;
SCALE block;
Conversion block MUX2;
Conversion block DEMUX2;
Conversion block BYTES_TO_DWORD;
Conversion block DWORD_TO_BYTES;
Conversion block BYTES_TO_WORD;
Conversion block WORD_TO_BYTES;
Conversion block WORDS_TO_DWORD;
Conversion block DWORD_TO_WORD;
CALL block;
System markers for accessing the function key LEDs F1...F6;
PID2 block;
IMMEDIATE_OUTPUT block also for the expansion modules;
SWAP2 block.

Corrections of functional deviation:

Status LED: In some undesired situation the Status LED was turning red, overwriting the green LED,
signaling PLC without application or stopped;
Numeric input fix: When using decimal places, it was truncating the value rather than rounding it at CAST
time, and it could change the value entered by the user.

PLC300 V3.30

New Functions:

Follow CANopen;
"Change of State" log event with variable list;
Ethernet function blocks with 128 bytes of data.

Equipments (Devices)

WPS v2.5X | 743

Corrections of functional deviation:

Inconsistent data on the component "Input text".

PLC300 V3.00

New Functions:

Internal memory increased to 1MB.

Corrections of functional deviation:

After the firmware download the watchdog alarm was activated.

NOTE!
It's strongly recommended to always upgrade the PLC300 firmware to the latest available version.

Hardware version 1 (H1): v1.76 or higher
Hardware version 2 (H2): v2.42 or higher
Hardware version 2 w/ 1MB (H2-1MB): v3.08 or higher

PLC300 V2.40

Corrections of functional deviation:

Locking of Modbus RTU blocks when utilized in USERFB. When disabling USERFB with a Modbus RTU
block activated (which reserves the modbus master resource) other Modbus RTU blocks couldn´t be
executed anymore;
General backup in version 2.3x was presenting problems during the backup of files in SD Card; and
The Watchdog was being activated in some devices during the initialization causing it to stop responding.

NOTE!
It's strongly recommended to always upgrade the PLC300 firmware to the latest available version.

Hardware version 1 (H1): v1.76 or higher
Hardware version 2 (H2): v2.42 or higher
Hardware version 2 w/ 1MB (H2-1MB): v3.08 or higher

PLC300 V2.30

New Functions:

Hot Download: Implementation that allows the realization of hot download on the resource, in other words,
its possible to change the ladder program, screens, alarms and logs with the actual program running and
after the download conclusion the new program is executed automatically;
Watchdog: Implementation of a configurable Watchdog with minimal time of 300ms. The outputs state can
be configure in case of Watchdog, as also one exit for exclusive use;

Equipments (Devices)

WPS v2.5X | 744

Markers for monitoring the maximum and minimum time of scan cycle;
Markers to disable the keys HOME, SETUP and ALARM.

Modification of existing functions:

Encoder default value changed from 12V to 5V.

PLC300 V2.10

New Functions:

Creation of blocks that support Strings:
o STR_COMPARE
o STR_COPY
o STR_COPY_LAST
o STR_DELETE
o STR_FIND
o STR_FIND_LAST
o STR_INSERT
o STR_LENGTH
o STR_REPLACE
o DWORD_TO_STRING
o REAL_TO_STRING
o STRING_TO_DWORD
o STRING_TO_REAL

Creation of block READENC4, reads encoder, calculating the positioning and velocity of the same, allows
use of filter;
External and counting tasks using DI1 to DI8;
Creation of block TRUNC, realizes variable truncation;
Creation of block ROUND, realizes variable rounding;
Increment and decrement of fields "Numeric Input" using direction keys (during field editing);
Log variables of type STRING;
Block STORE with variables of type STRING;
Block SEL with variables of type STRING;
Block ISTORE with variables of type STRING;
Block ILOAD with variables of type STRING;
Use of variables of type STRING in "Text Input" fields;
Creation of structures and recipes with variables of type STRING;

Modification of existing functions

Base address modified from 3000 to 0.

PLC300 V2.00

New Functions:

Creation of block P_RMAP that generates train pulses with frequency in form of "ramp";

Equipments (Devices)

WPS v2.5X | 745

Inputs DI9 and DI10 as encoder inputs;
DI10 can be used as rapid count, and DI9 determines the counting direction;
Change in the analog input 10bits to 12bits;
Automatic recovery (ASR) application, setup, firmware ... through FLASH memory, requiring no more SD
Card for this feature.

PLC300 V1.70

New Functions:

Creation of a "Text Input" component type;
Creation of one new memory area for preserving the variable values during download

NOTE!
It's strongly recommended to always upgrade the PLC300 firmware to the latest available version.

Hardware version 1 (H1): v1.76 or higher
Hardware version 2 (H2): v2.42 or higher
Hardware version 2 w/ 1MB (H2-1MB): v3.08 or higher

PLC300 V1.60

Modification of existing functions

Creation of new instructions for program size and scan cycle reduction

PLC300 V1.50

New Functions:

Status System Markers (%S_):
o STS_ASR_OCC
o STS_INPUT

Command System Markers (%C_):
o RS232_TIMEOUT_MS
o RS232_RX_END_CHARACTER
o RS232_TX_INITIAL_ADDRESS
o RS232_RX_INITIAL_ADDRESS
o RS232_TX_BUFFER_LENGTH
o RS232_MAX_RX_BUFFER_LENGTH
o RS232_ENABLE_END_CHARACTER
o RS232_START_TX
o RS485_TIMEOUT_MS
o RS485_RX_END_CHARACTER
o RS485_TX_INITIAL_ADDRESS
o RS485_RX_INITIAL_ADDRESS
o RS485_TX_BUFFER_LENGTH

Equipments (Devices)

WPS v2.5X | 746

o RS485_MAX_RX_BUFFER_LENGTH
o RS485_ENABLE_END_CHARACTER
o RS485_START_TX

Automatic Software Recovery (ASR) function

Modification of existing functions

Modbus RTU block modification to support reading and writing 16 registers
Modified timer blocks (TON, TOF and TP) with adjustable time base (milliseconds centisegundos, minutes
and seconds)
Increased capacity of the amount of user screens

PLC300 V1.40

New Functions:

Status System Markers (%S_):
o KEY_NUMERIC
o KEY_HOME
o KEY_ESC
o KEY_DEL
o KEY_ALARM
o KEY_SETUP
o KEY_SHIFT
o KEY_UP
o KEY_DOWN
o KEY_LEFT
o KEY_RIGHT
o KEY_ENTER
o KEY_F1 ... KEY_F12

Program upload
Force I/O
English language on the PLC300
Presentation of variables on alarm screens
Leading zeros in the "Numeric Input" and "Numeric Output" fields on the user’s screens
Download option:
o Initialize output and volatile variables
o Stop/Start the execution of the program automatically

Password-protected commands for recording and loading setup and firmware files on the SD card.

PLC300 V1.30

New Functions:

Status System Markers (%S_):
o BOOTLOADER
o INTERVAL_TASK9_WATCHDOG ... INTERVAL_TASK16_WATCHDOG
o SINGLE_TASK9_WATCHDOG ... SINGLE_TASK16_WATCHDOG

Equipments (Devices)

WPS v2.5X | 747

o COUNT_TASK9_WATCHDOG ... COUNT_TASK16_WATCHDOG
o STS_SD_INVALID

Command System Markers (%C_):
o INTERVAL_TASK9_DISABLE ... INTERVAL_TASK16_DISABLE
o SINGLE_TASK9_DISABLE ... SINGLE_TASK16_DISABLE
o COUNT_TASK9_DISABLE ... COUNT_TASK9_DISABLE

Modbus TCP Blocks
o MBTCP_ReadBinary
o MBTCP_WriteBinary
o MBTCP_ReadRegister
o MBTCP_WriteRegister
o MBTCP_ServerStatus
o MBTCP_ClientControlStatus

New Data Transfer Blocks (Recipes)
o ReadRecipe
o WriteRecipe

Log of
o Alarms
o Events

Backup in the SD Card of
o Firmware
o Resource
o Setup

Ethernet
o WPS gateway connection with the PLC300

PLC300 V1.20

New Functions:

Tasks
o INTERVAL
o SINGLE
o EXTERN EVENT (DI9, DI10 and Z pulse)
o COUNT (DI9, DI10, A, B, Z pulses and quadrature AB)
o SYSTEM (start and stop)

Status System Markers (%S_)
o TICK_100US
o INTERVAL_TASK1_WATCHDOG...INTERVAL_TASK8_WATCHDOG
o SINGLE_TASK1_WATCHDOG...SINGLE_TASK8_WATCHDOG
o EXT_EVENT_TASK1_WATCHDOG...EXT_EVENT_TASK3_WATCHDOG
o COUNT_TASK1_WATCHDOG...COUNT_TASK8_WATCHDOG
o MAIN_TASK_WATCHDOG
o START_TASK_WATCHDOG
o STOP_TASK_WATCHDOG

Command System Markers (%C_)
o INTERVAL_TASK1_DISABLE...INTERVAL_TASK8_DISABLE
o SINGLE_TASK1_DISABLE...SINGLE_TASK8_DISABLE
o EXT_EVENT_TASK1_WATCHDOG...EXT_EVENT_TASK3_WATCHDOG

Equipments (Devices)

WPS v2.5X | 748

o COUNT_TASK1_DISABLE...COUNT_TASK8_DISABLE

Hardware Blocks
o IMMEDIATEINPUT
o IMMEDIATEOUTPUT
o READENC3

Coil Block
o IMMEDIATECOIL

Modification of existing functions

Options to initialize or not the retentive variables and alarm history in the download.
PWM Block - frequency value of 0 Hz allowed
ReadEnc and ReadEnc2 Blocks - Value Data Type can be DINT when the counted pulses are
Quadrature_AB, allowing negative values according to the rotation direction of the encoder.

Corrections of functional deviation

MB_WriteBinary Block - in previous versions, the block always wrote the value 1.
Variable addresses modified for access via Modbus.

PLC300 Versions previous to V1.20

We recommend to update the firmware.

PLC300 V1.10

New Functions:

ASCII RS232 Protocol

PLC300 V1.00

Initial version.

11.8.3 I/O's

Hardware information can be found in the Manual of the PLC300 at the website www.weg.net.

Digital Inputs

Address Bit Modbus Tag Description

%IB0 0 16000 DI1 Digital input 1

%IB0 1 16001 DI2 Digital input 2

%IB0 2 16002 DI3 Digital input 3

http://www.weg.net

Equipments (Devices)

WPS v2.5X | 749

%IB0 3 16003 DI4 Digital input 4

%IB0 4 16004 DI5 Digital input 5

%IB0 5 16005 DI6 Digital input 6

%IB0 6 16006 DI7 Digital input 7

%IB0 7 16007 DI8 Digital input 8

%IB1 0 16008 DI9 Digital input 9

%IB1 1 16009 DI10 Digital input 10

%IB2 0 16016 DI101 Digital input 1 - Slot 1

%IB2 1 16017 DI102 Digital input 2 - Slot 1

%IB2 2 16018 DI103 Digital input 3 - Slot 1

%IB2 3 16019 DI104 Digital input 4 - Slot 1

%IB2 4 16020 DI105 Digital input 5 - Slot 1

%IB2 5 16021 DI106 Digital input 6 - Slot 1

%IB2 6 16022 DI107 Digital input 7 - Slot 1

%IB2 7 16023 DI108 Digital input 8 - Slot 1

%IB3 0 16024 DI109 Digital input 9 - Slot 1

%IB3 1 16025 DI110 Digital input 10 - Slot 1

%IB3 2 16026 DI111 Digital input 11 - Slot 1

%IB3 3 16027 DI112 Digital input 12 - Slot 1

%IB3 4 16028 DI113 Digital input 13 - Slot 1

%IB3 5 16029 DI114 Digital input 14 - Slot 1

%IB3 6 16030 DI115 Digital input 15 - Slot 1

%IB3 7 16031 DI116 Digital input 16 - Slot 1

%IB4 0 16032 DI201 Digital input 1 - Slot 2

%IB4 1 16033 DI202 Digital input 2 - Slot 2

%IB4 2 16034 DI203 Digital input 3 - Slot 2

%IB4 3 16035 DI204 Digital input 4 - Slot 2

%IB4 4 16036 DI205 Digital input 5 - Slot 2

%IB4 5 16037 DI206 Digital input 6 - Slot 2

%IB4 6 16038 DI207 Digital input 7 - Slot 2

%IB4 7 16039 DI208 Digital input 8 - Slot 2

%IB5 0 16040 DI209 Digital input 9 - Slot 2

%IB5 1 16041 DI210 Digital input 10 - Slot 2

%IB5 2 16042 DI211 Digital input 11 - Slot 2

%IB5 3 16043 DI212 Digital input 12 - Slot 2

%IB5 4 16044 DI213 Digital input 13 - Slot 2

%IB5 5 16045 DI214 Digital input 14 - Slot 2

%IB5 6 16046 DI215 Digital input 15 - Slot 2

%IB5 7 16047 DI216 Digital input 16 - Slot 2

Analog Inputs

Equipments (Devices)

WPS v2.5X | 750

Address Bit Modbus Tag Description

%IW6 -- 5003 AI1 Analog input 1

%IW8 -- 5004 AI101 Analog input 1 - Slot 1

%IW10 -- 5005 AI102 Analog input 2 - Slot 1

%IW12 -- 5006 AI103 Analog input 3 - Slot 1

%IW14 -- 5007 AI104 Analog input 4 - Slot 1

%IW16 -- 5008 AI105 Analog input 5 - Slot 1

%IW18 -- 5009 AI201 Analog input 1 - Slot 2

%IW20 -- 5010 AI202 Analog input 2 - Slot 2

%IW22 -- 5011 AI203 Analog input 3 - Slot 2

%IW24 -- 5012 AI204 Analog input 4 - Slot 2

%IW26 -- 5013 AI205 Analog input 5 - Slot 2

Digital Outputs

Equipments (Devices)

WPS v2.5X | 751

Address Bit Modbus Tag Description

%QB0 0 16000 DO1 Digital output 1

%QB0 1 16001 DO2 Digital output 2

%QB0 2 16002 DO3 Digital output 3

%QB0 3 16003 DO4 Digital output 4

%QB0 4 16004 DO5 Digital output 5

%QB0 5 16005 DO6 Digital output 6

%QB0 6 16006 DO7 Digital output 7

%QB0 7 16007 DO8 Digital output 8

%QB1 0 16008 DO9 Digital output 9

%QB2 0 16016 DO101 Digital output 1 - Slot 1

%QB2 1 16017 DO102 Digital output 2 - Slot 1

%QB2 2 16018 DO103 Digital output 3 - Slot 1

%QB2 3 16019 DO104 Digital output 4 - Slot 1

%QB2 4 16020 DO105 Digital output 5 - Slot 1

%QB2 5 16021 DO106 Digital output 6 - Slot 1

%QB2 6 16022 DO107 Digital output 7 - Slot 1

%QB2 7 16023 DO108 Digital output 8 - Slot 1

%QB3 0 16024 DO109 Digital output 9 - Slot 1

%QB3 1 16025 DO110 Digital output 10 - Slot 1

%QB3 2 16026 DO111 Digital output 11 - Slot 1

%QB3 3 16027 DO112 Digital output 12 - Slot 1

%QB3 4 16028 DO113 Digital output 13 - Slot 1

%QB3 5 16029 DO114 Digital output 14 - Slot 1

%QB3 6 16030 DO115 Digital output 15 - Slot 1

%QB3 7 16031 DO116 Digital output 16 - Slot 1

%QB4 0 16032 DO201 Digital output 1 - Slot 2

%QB4 1 16033 DO202 Digital output 2 - Slot 2

%QB4 2 16034 DO203 Digital output 3 - Slot 2

%QB4 3 16035 DO204 Digital output 4 - Slot 2

%QB4 4 16036 DO205 Digital output 5 - Slot 2

%QB4 5 16037 DO206 Digital output 6 - Slot 2

%QB4 6 16038 DO207 Digital output 7 - Slot 2

%QB4 7 16039 DO208 Digital output 8 - Slot 2

%QB5 0 16040 DO209 Digital output 9 - Slot 2

%QB5 1 16041 DO210 Digital output 10 - Slot 2

%QB5 2 16042 DO211 Digital output 11 - Slot 2

%QB5 3 16043 DO212 Digital output 12 - Slot 2

%QB5 4 16044 DOI13 Digital output 13 - Slot 2

%QB5 5 16045 DO214 Digital output 14 - Slot 2

%QB5 6 16046 DO215 Digital output 15 - Slot 2

%QB5 7 16047 DO216 Digital output 16 - Slot 2

Equipments (Devices)

WPS v2.5X | 752

Analog Outputs

Address Bit Modbus Tag Description

%QW6 -- 5003 AO1 Analog output 1

%QW8 -- 5004 AO101 Analog output 1 - Slot 1

%QW10 -- 5005 AO102 Analog output 2 - Slot 1

%QW12 -- 5006 AO201 Analog output 1 - Slot 2

%QW14 -- 5007 AO202 Analog output 2 - Slot 2

11.8.4 System Markers

The following variables contained in the GLOBAL_SYSTEM group of the variables table, have the fixed tag.

Some markers of the BYTE type (%SB or %CB) are allocated in the same modbus address for registers. In
this case:

(L): indicates that it is the least significant byte of the WORD;
(H): indicates that it is the most significant byte of the WORD;

NOTE!
The base address was modified from 3000 to 0 in firmware version 2.10.

Reading System Markers (Status)

Address Bit Modbus Tag Description

Ladder

%SB0004 0 32 FALSE Alw ays in 0

%SB0004 1 33 TRUE Alw ays in 1

%SB0004 2 34 FREQ_2HZ Oscillator 2Hz

%SB0004 3 35 PULSE_1SCAN Pulse during the f irst scan cycle

%SB0004 4 36 ENC_DIR Encoder speed direction (0-Clockw ise, 1-Anticlockw ise)

PLC300 Status

%SW0000 -- 3000 FIRMWARE Firmw are version

%SW0002 -- 3001 SCAN_CICLE Scan cycle time

%SB0006 0 48 STS_BAT Low battery

%SB0006 1 49 STS_DOS Digital output fault

%SB0006 2 50 STS_ENC Encoder fault

%SB0006 3 51 STS_AI1 Analog input 1 break detected

%SB0006 4 52 STS_SD_INVALID SD card missing or invalid

%SB0006 4 53 STS_DOS_SLOT1 Digital output slot 1 error

%SB0006 5 54 STS_DOS_SLOT2 Digital output slot 2 error

%SB0006 6 55 STS_ASR_OCC Automatic Softw are Recovery (ASR) occurred

%SD0008 -- 3004 ENC_FREQ Encoder frequency

Equipments (Devices)

WPS v2.5X | 753

%SD0012 -- 3006 TICK_100US Marker increased every 100us

%SW0016 -- 3008 BOOTLOADER Module Version Upgrade Firmw are

%SB0540 0 3270 WATCHDOG_OCC Watchdog occured

%SW0542 -- 3271 WATCHDOG_DATE Watchdog date

%SD0556 -- 3278 WATCHDOG_CODE Watchdog code

HMI Keys and Screen

%SB0020 -- 3010 SCREEN Actual screen

%SB0022 -- 3011 KEY_NUMERIC ASCII code of numeric key

%SB0024 0 192 KEY_HOME HOME key pressed

%SB0024 1 193 KEY_ESC ESC key pressed

%SB0024 2 194 KEY_DEL DEL key pressed

%SB0024 3 195 KEY_ALARM ALARM key pressed

%SB0024 4 196 KEY_SETUP SETUP key pressed

%SB0024 5 197 KEY_SHIFT SHIFT key pressed

%SB0024 6 198 KEY_UP UP key pressed

%SB0024 7 199 KEY_DOWN DOWN key pressed

%SB0025 0 200 KEY_LEFT LEFT key pressed

%SB0025 1 201 KEY_RIGHT RIGHT key pressed

%SB0025 2 202 KEY_ENTER ENTER key pressed

%SB0025 3 203 STS_INPUT Editing element 'Numeric Input' on screen

%SB0026 0 208 KEY_F1 F1 key pressed

%SB0026 1 209 KEY_F2 F2 key pressed

%SB0026 2 210 KEY_F3 F3 key pressed

%SB0026 3 2011 KEY_F4 F4 key pressed

%SB0026 4 212 KEY_F5 F5 key pressed

%SB0026 5 213 KEY_F6 F6 key pressed

%SB0026 6 214 KEY_F7 F7 key pressed

%SB0026 7 215 KEY_F8 F8 key pressed

%SB0027 0 216 KEY_F9 F9 key pressed

%SB0027 1 217 KEY_F10 F10 key pressed

%SB0027 2 218 KEY_F11 F11 key pressed

%SB0027 3 219 KEY_F12 F12 key pressed

Real Time Clock (RTC)

%SW0030 -- 3015 HOUR Real time clock hour

%SW0032 -- 3016 MINUTE Real time clock minute

%SW0034 -- 3017 SECOND Real time clock second

%SW0036 -- 3018 DAY Real time clock day

%SW0038 -- 3019 MONTH Real time clock month

%SW0040 -- 3020 YEAR Real time clock year

%SW0042 -- 3021 WEEKDAY Weekday (0-Sunday, 1-Monday ... 6-Saturday)

Task Watchdog

%SB0050 0 400 INTERVAL_TASK1_WATCHDOG Time task 1 w atchdog

Equipments (Devices)

WPS v2.5X | 754

%SB0050 1 401 INTERVAL_TASK2_WATCHDOG Time task 2 w atchdog

%SB0050 2 402 INTERVAL_TASK3_WATCHDOG Time task 3 w atchdog

%SB0050 3 403 INTERVAL_TASK4_WATCHDOG Time task 4 w atchdog

%SB0050 4 404 INTERVAL_TASK5_WATCHDOG Time task 5 w atchdog

%SB0050 5 405 INTERVAL_TASK6_WATCHDOG Time task 6 w atchdog

%SB0050 6 406 INTERVAL_TASK7_WATCHDOG Time task 7 w atchdog

%SB0050 7 407 INTERVAL_TASK8_WATCHDOG Time task 8 w atchdog

%SB0051 0 408 INTERVAL_TASK9_WATCHDOG Time task 9 w atchdog

%SB0051 1 409 INTERVAL_TASK10_WATCHDOG Time task 10 w atchdog

%SB0051 2 410 INTERVAL_TASK11_WATCHDOG Time task 11 w atchdog

%SB0051 3 411 INTERVAL_TASK12_WATCHDOG Time task 12 w atchdog

%SB0051 4 412 INTERVAL_TASK13_WATCHDOG Time task 13 w atchdog

%SB0051 5 413 INTERVAL_TASK14_WATCHDOG Time task 14 w atchdog

%SB0051 6 414 INTERVAL_TASK15_WATCHDOG Time task 15 w atchdog

%SB0051 7 415 INTERVAL_TASK16_WATCHDOG Time task 16 w atchdog

%SB0052 0 416 SINGLE_TASK1_WATCHDOG Event task 1 w atchdog

%SB0052 1 417 SINGLE_TASK2_WATCHDOG Event task 2 w atchdog

%SB0052 2 418 SINGLE_TASK3_WATCHDOG Event task 3 w atchdog

%SB0052 3 419 SINGLE_TASK4_WATCHDOG Event task 4 w atchdog

%SB0052 4 420 SINGLE_TASK5_WATCHDOG Event task 5 w atchdog

%SB0052 5 421 SINGLE_TASK6_WATCHDOG Event task 6 w atchdog

%SB0052 6 422 SINGLE_TASK7_WATCHDOG Event task 7 w atchdog

%SB0052 7 423 SINGLE_TASK8_WATCHDOG Event task 8 w atchdog

%SB0053 0 424 SINGLE_TASK9_WATCHDOG Event task 9 w atchdog

%SB0053 1 425 SINGLE_TASK10_WATCHDOG Event task 10 w atchdog

%SB0053 2 426 SINGLE_TASK11_WATCHDOG Event task 11 w atchdog

%SB0053 3 427 SINGLE_TASK12_WATCHDOG Event task 12 w atchdog

%SB0053 4 428 SINGLE_TASK13_WATCHDOG Event task 13 w atchdog

%SB0053 5 429 SINGLE_TASK14_WATCHDOG Event task 14 w atchdog

%SB0053 6 430 SINGLE_TASK15_WATCHDOG Event task 15 w atchdog

%SB0053 7 431 SINGLE_TASK16_WATCHDOG Event task 16 w atchdog

%SB0054 0 3027 EXT_EVENT_TASK1_WATCHDOG External event 1 task w atchdog

%SB0054 1 3027 EXT_EVENT_TASK2_WATCHDOG External event 2 task w atchdog

%SB0054 2 3027 EXT_EVENT_TASK3_WATCHDOG External event 3 task w atchdog

%SB0056 0 3028 COUNT_TASK1_WATCHDOG Count task 1 w atchdog

%SB0056 1 3028 COUNT_TASK2_WATCHDOG Count task 2 w atchdog

%SB0056 2 3028 COUNT_TASK3_WATCHDOG Count task 3 w atchdog

%SB0056 3 3028 COUNT_TASK4_WATCHDOG Count task 4 w atchdog

%SB0056 4 3028 COUNT_TASK5_WATCHDOG Count task 5 w atchdog

%SB0056 5 3028 COUNT_TASK6_WATCHDOG Count task 6 w atchdog

%SB0056 6 3028 COUNT_TASK7_WATCHDOG Count task 7 w atchdog

%SB0056 7 3028 COUNT_TASK8_WATCHDOG Count task 8 w atchdog

Equipments (Devices)

WPS v2.5X | 755

%SB0057 0 3028 COUNT_TASK9_WATCHDOG Count task 9 w atchdog

%SB0057 1 3028 COUNT_TASK10_WATCHDOG Count task 10 w atchdog

%SB0057 2 3028 COUNT_TASK11_WATCHDOG Count task 11 w atchdog

%SB0057 3 3028 COUNT_TASK12_WATCHDOG Count task 12 w atchdog

%SB0057 4 3028 COUNT_TASK13_WATCHDOG Count task 13 w atchdog

%SB0057 5 3028 COUNT_TASK14_WATCHDOG Count task 14 w atchdog

%SB0057 6 3028 COUNT_TASK15_WATCHDOG Count task 15 w atchdog

%SB0057 7 3028 COUNT_TASK16_WATCHDOG Count task 16 w atchdog

%SB0058 0 3029 MAIN_TASK_WATCHDOG Main task w atchdog

%SB0058 1 3029 START_TASK_WATCHDOG System start task w atchdog

%SB0058 2 3029 STOP_TASK_WATCHDOG System stop task w atchdog

RS232

%SW0068 -- 3034 RS232_TX_TELEGRAM_COUNTER Sent telegrams counter

%SW0070 -- 3035 RS232_RX_TELEGRAM_COUNTER Received telegrams counter

%SW0072 -- 3036 RS232_RX_BYTE_COUNTER Counter of received bytes for each telegram

%SB0078 0 624 RS232_TIMEOUT Response timeout

%SB0078 1 625 RS232_RX_TELEGRAM_FINISHED Telegram received

%SB0078 2 626 RS232_TX_TELEGRAM_FINISHED Telegram sent

%SB0114 0 912 RS232_RX_FINISHED ASCII reception f inished

RS485

%SW0084 -- 3042 RS485_TX_TELEGRAM_COUNTER Sent telegrams counter

%SW0086 -- 3043 RS485_RX_TELEGRAM_COUNTER Received telegrams counter

%SW0088 -- 3044 RS485_RX_BYTE_COUNTER Counter of received bytes for each telegram

%SB0094 0 752 RS485_TIMEOUT Response timeout

%SB0094 1 753 RS485_RX_TELEGRAM_FINISHED Telegram received

%SB0094 2 754 RS485_TX_TELEGRAM_FINISHED Telegram transmitted

Modbus RTU

%SB0100 -- 3050 MBUS_INTERFACE_DISABLED Interface Modbus RTU Master disabled.

%SW0102 -- 3051 MBUS_REQUEST_COUNT Counter requests made by the Master Modbus RTU

%SW0104 -- 3052 MBUS_RESPONSE_COUNT
Counter of successful responses received by the

Modbus master

%SW0106 -- 3053 MBUS_NO_ANSWER_COUNT
Counter of requests w ithout answ er received by the

master (timeout)

%SW0108 -- 3054 MBUS_RESP_ERROR_COUNT
Counter error responses received by the Modbus RTU

Master

%SB0110 -- 3055 (L) MBUS_LAST_ERROR_ADDR Last error detected: Modbus RTU slave address

%SB0111 -- 3055 (H) MBUS_LAST_ERROR_TYPE Last detected error: error type

%SB0112 -- 3056 MBUS_LAST_ERROR_CODE Last detected error: error code

%SW0120 -- 3060 MBUS_SLAVE_REQUEST_COUNT
Counter telegrams received successfully by PLC300 as

Modbus RTU slave

%SW0122 -- 3061 MBUS_SLAVE_RESPONSE_COUNT
Response Counter transmitted successfully by PLC300

as Modbus RTU slave

CAN

%SB0150 -- 3075 CAN_STATUS CAN interface status

Equipments (Devices)

WPS v2.5X | 756

%SB0151 0 1208 CAN_BUS_POWER CAN bus pow er supply

%SW0152 -- 3076 CAN_RX_COUNTER Received CAN telegram counter

%SW0154 -- 3077 CAN_TX_COUNTER Transmitted CAN telegram counter

%SW0156 -- 3078 CAN_BUS_OFF_COUNTER Detected buss off error counter

%SW0158 -- 3079 CAN_OVERRUN_COUNTER Lost (overrun) CAN telegram counter

CANopen

%SB0180 -- 3090 (L) CO_STATUS CANopen communication status

%SB0181 -- 3090 (H) CO_NODE_STATE
CANopen node status (pre-operational, operational,

stopped)

%SB0200 0 1600 CO_STS_MASTER_CONTACTED The CANopen master contacted all the slaves

%SB0200 1 1601 CO_STS_MASTER_CONFIG_OK
The CANopen master dow nloaded the configurations of

the slaves

%SB0200 2 1602 CO_STS_MASTER_ERROR_CTRL_OK
Error control protocol (node guarding/heartbeat) initiated

w ith the slaves

%SB0200 3 1603 CO_STS_MASTER_INIT_FINISHED The CANopen master initialized all the slaves

%SB0200 4 1604 CO_STS_MASTER_INIT_ERROR A slave presented an initialization error

%SB0200 5 1605 CO_STS_MASTER_ERROR_CTRL
The CANopen master detected a fault in a slave through

the error detection protocol

%SB0200 6 1606 CO_STS_MASTER_EMCY A slave reported EMCY

%SB0201 0 1608 CO_STS_MASTER_NMT_TOGGLE NMT command toggle bit feedback

%SB0206 5 1613 CO_STS_MASTER_BUS_OFF The CANopen master is in bus off

%SB0201 6 1614 CO_STS_MASTER_POWER_OFF
The CANopen master has no pow er supply at the CAN

interface

%SB0201 7 1615 CO_STS_MASTER_COMM_DISABLED Disabled CANopen master communication

%SB0202 0 1616 CO_STS_SLAVE1_CONTACTED
The CANopen master successfully contacted the slave

in the indicated address

%SB0202 1 1617 CO_STS_SLAVE1_CONFIG_OK The CANopen master successfully configured the slave

%SB0202 2 1618 CO_STS_SLAVE1_ERROR_CTRL_OK
Error control protocol (node guarding/heartbeat) initiated

w ith the slave

%SB0202 3 1619 CO_STS_SLAVE1_INIT_FINISHED Concluded slave initialization

%SB0202 4 1620 CO_STS_SLAVE1_INIT_ERROR Initialization error in the indicated address slave

%SB0202 5 1621 CO_STS_SLAVE1_ERROR_CTRL_FAIL
Fault detected in some slave from the CANopen master

error detection protocol

%SB0202 6 1632 CO_STS_SLAVE1_EMCY The slave in the indicated address reported EMCY error

%SB0204 0 1633 CO_STS_SLAVE2_CONTACTED
The CANopen master successfully contacted the slave

in the indicated address

%SB0204 1 1634 CO_STS_SLAVE2_CONFIG_OK The CANopen master successfully configured the slave

%SB0204 2 1635 CO_STS_SLAVE2_ERROR_CTRL_OK
Error control protocol (node guarding/heartbeat) initiated

w ith the slave

%SB0204 3 1636 CO_STS_SLAVE2_INIT_FINISHED Concluded slave initialization

%SB0204 4 1637 CO_STS_SLAVE2_INIT_ERROR Initialization error in the indicated address slave

%SB0204 5 1638 CO_STS_SLAVE2_ERROR_CTRL_FAIL
Fault detected in some slave from the CANopen master

error detection protocol

%SB0204 6 1639 CO_STS_SLAVE2_EMCY The slave in the indicated address reported EMCY error

...

%SB0454 0 3632 CO_STS_SLAVE127_CONTACTED The CANopen master successfully contacted the slave

Equipments (Devices)

WPS v2.5X | 757

in the indicated address

%SB0454 1 3633 CO_STS_SLAVE127_CONFIG_OK The CANopen master successfully configured the slave

%SB0454 2 3634 CO_STS_SLAVE127_ERROR_CTRL_OK
Error control protocol (node guarding/heartbeat) initiated

w ith the slave

%SB0454 3 3635 CO_STS_SLAVE127_INIT_FINISHED Concluded slave initialization

%SB0454 4 3636 CO_STS_SLAVE127_INIT_ERROR Initialization error in the indicated address slave

%SB0454 5 3637 CO_STS_SLAVE127_ERROR_CTRL_FAIL
Fault detected in some slave from the CANopen master

error detection protocol

%SB0454 6 3638 CO_STS_SLAVE127_EMCY The slave in the indicated address reported EMCY error

%SW0460 -- 3230 CO_SDO_ERROR_NODE_ID
SDO error: address of the slave w ith the last detected

SDO error

%SW0462 -- 3231 CO_SDO_ERROR_OBJECT_INDEX SDO error: object index

%SW0464 -- 3232 CO_SDO_ERROR_OBJECT_SUBINDEX SDO error: object sub-index

%SW0466 -- 3233 CO_SDO_ERROR_FUNCTION SDO error: function (w riting/reading)

%SW0468 -- 3234 CO_SDO_ERROR_VALUE SDO error: value

%SW0472 -- 3236 CO_SDO_ERROR_CODE SDO error: error code

%SW0480 -- 3240 CO_EMCY_SLAVE_ID Last reported EMCY: slave address

%SW0482 -- 3241 CO_EMCY_DATA Last reported EMCY: object data

Ethernet

%SB0492 -- 3246 ETH_MAC[6] Physical Address

%SB0498 -- 3249 ETH_STS_SPD_DUP Ethernet Communication Mode

%SD0500 -- 3250 ETH_STS_IP IP address

%SD0504 -- 3252 ETH_STS_MASK Subnet Mask

%SD0508 -- 3254 ETH_STS_GW Default gatew ay

Modbus TCP

%SW0512 -- 3256 MBTCP_SERVER_REQUEST_COUNT
Counter of successful telegrams received by the

PLC300 as Modbus TCP server

%SW0514 -- 3257 MBTCP_SERVER_RESPONSE_COUNT
Counter of successful telegrams received by the

PLC300 as Modbus TCP server

%SW0516 -- 3258 MBTCP_SERVER_CNXNS Number of Modbus TCP server connections active

%SB0520 -- 3260 MBTCP_CLIENT_DISABLED Disabled Modbus TCP client

%SW0522 -- 3261 MBTCP_REQUEST_COUNT Counter of the requests done by the Modbus TCP client

%SW0524 -- 3262 MBTCP_RESPONSE_COUNT
Counter of successful responses received by the

Modbus TCP client

%SW0526 -- 3263 MBTCP_NO_ANSWER_COUNT
Counter of requests w ithout answ er received by the

client (timeout)

%SW0528 -- 3264 MBTCP_RESP_ERROR_COUNT
Counter of error responses received by the Modbus

TCP client

%SW0530 -- 3265 MBTCP_LAST_ERROR_TCP_PORT Last detected error: Modbus TCP server TCP port

%SD0532 -- 3266 MBTCP_LAST_ERROR_IP Last detected error: Modbus TCP server IP address

%SB0536 -- 3268 (L) MBTCP_LAST_ERROR_UNITID Last detected error: Modbus TCP server Unit ID

%SB0537 -- 3268 (H) MBTCP_LAST_ERROR_TYPE Last detected error: error type

%SB0538 -- 3269 MBTCP_LAST_ERROR_CODE Last detected error: error code

Equipments (Devices)

WPS v2.5X | 758

Writing / Reading System Markers (Command)

Equipments (Devices)

WPS v2.5X | 759

Address Bit Modbus Tag Description

PLC300

%CB0000 0 0 ERASE_RET Erase retain markers

%CB0000 1 2 CLEAR_ENC_ALARM Clear encoder fault alarm

%CB0000 2 3 BUZZER_ACTIVE Buzzer active

Real Time Clock (RTC)

%CW0030 -- 3015 WR_HOUR Write real time clock hour

%CW0032 -- 3016 WR_MINUTE Write real time clock minute

%CW0034 -- 3017 WR_SECOND Write real time clock seconds

%CW0036 -- 3018 WR_DAY Write real time clock day

%CW0038 -- 3019 WR_MONTH Write real time clock month

%CW0040 -- 3020 WR_YEAR Write real time clock year

CAN

%CB0052 -- 3026 CAN_ADDRESS PLC300 address for CAN interface

%CB0055 -- 3027 CAN_BAUDRATE CAN interface baud rate

RS232

%CB0061 -- 3030 RS232_MODE RS232 interface operation mode: 0=Modbus RTU 2=ASCII

%CB0062 -- 3031 (L) RS232_BYTE_FORMAT RS232 interface parity and stop bits

%CB0063 -- 3031 (H) RS232_BAUDRATE RS232 interface baud rate

%CB0114 0 912 RS232_RX_CLEAR Start new ASCII reception

%CB0124 -- 3062 RS232_ASCII_STRING ASCII reception buffer

%CB0124 -- 3062 RS232_ASCII_BYTEBUFFER ASCII reception buffer

RS485

%CB0068 -- 3034 (L) RS485_ADDRESS PLC300 address for RS485 interface

%CB0069 -- 3034 (H) RS485_MODE RS485 interface operation mode (master or slave)

%CB0070 -- 3035 (L) RS485_BYTE_FORMAT RS485 interface parity and stop bits

%CB0071 -- 3035 (H) RS485_BAUDRATE RS485 interface baud rate

Modbus RTU

%CW0100 -- 3050 MBUS_DISABLE_COMM Disable Interface Modbus RTU Master

CANopen

%CB0120 -- 3060 CO_NMT_COMMAND
NMT command transmission by the CANopen master: command

code

%CB0121 0 968 CO_NMT_TOGGLE NMT command transmission by the CANopen master: toggle bit

%CB0121 7 975 CO_DISABLE Disables the CANopen communication

%CB0122 -- 3061 CO_NMT_SLAVE_ADDR
NMT command transmission by the CANopen master: slave

address

Time, event and count task

%CB0400 0 3200 INTERVAL_TASK1_DISABLE Disable time task 1

%CB0400 1 3201 INTERVAL_TASK2_DISABLE Disable time task 2

%CB0400 2 3202 INTERVAL_TASK3_DISABLE Disable time task 3

%CB0400 3 3203 INTERVAL_TASK4_DISABLE Disable time task 4

%CB0400 4 3204 INTERVAL_TASK5_DISABLE Disable time task 5

%CB0400 5 3205 INTERVAL_TASK6_DISABLE Disable time task 6

%CB0400 6 3206 INTERVAL_TASK7_DISABLE Disable time task 7

%CB0400 7 3207 INTERVAL_TASK8_DISABLE Disable time task 8

%CB0401 0 3208 INTERVAL_TASK9_DISABLE Disable time task 9

%CB0401 1 3209 INTERVAL_TASK10_DISABLE Disable time task 10

%CB0401 2 3210 INTERVAL_TASK11_DISABLE Disable time task 11

%CB0401 3 3211 INTERVAL_TASK12_DISABLE Disable time task 12

%CB0401 4 3212 INTERVAL_TASK13_DISABLE Disable time task 13

%CB0401 5 3213 INTERVAL_TASK14_DISABLE Disable time task 14

%CB0401 6 3214 INTERVAL_TASK15_DISABLE Disable time task 15

%CB0401 7 3215 INTERVAL_TASK16_DISABLE Disable time task 16

%CB0402 0 3216 SINGLE_TASK1_DISABLE Disable event task 1

%CB0402 1 3217 SINGLE_TASK2_DISABLE Disable event task 2

%CB0402 2 3218 SINGLE_TASK3_DISABLE Disable event task 3

%CB0402 3 3219 SINGLE_TASK4_DISABLE Disable event task 4

%CB0402 4 3220 SINGLE_TASK5_DISABLE Disable event task 5

%CB0402 5 3221 SINGLE_TASK6_DISABLE Disable event task 6

%CB0402 6 3222 SINGLE_TASK7_DISABLE Disable event task 7

%CB0402 7 3223 SINGLE_TASK8_DISABLE Disable event task 8

%CB0403 0 3224 SINGLE_TASK9_DISABLE Disable event task 9

%CB0403 1 3225 SINGLE_TASK10_DISABLE Disable event task 10

%CB0403 2 3226 SINGLE_TASK11_DISABLE Disable event task 11

%CB0403 3 3227 SINGLE_TASK12_DISABLE Disable event task 12

%CB0403 4 3228 SINGLE_TASK13_DISABLE Disable event task 13

%CB0403 5 3229 SINGLE_TASK14_DISABLE Disable event task 14

%CB0403 6 3230 SINGLE_TASK15_DISABLE Disable event task 15

%CB0403 7 3231 SINGLE_TASK16_DISABLE Disable event task 16

%CB0404 0 3232 EXT_EVENT_TASK1_DISABLE Disable external event task 1

%CB0404 1 3233 EXT_EVENT_TASK2_DISABLE Disable external event task 2

%CB0404 2 3234 EXT_EVENT_TASK3_DISABLE Disable external event task 3

%CB0406 0 3248 COUNT_TASK1_DISABLE Disable count task 1

%CB0406 1 3249 COUNT_TASK2_DISABLE Disable count task 2

%CB0406 2 3250 COUNT_TASK3_DISABLE Disable count task 3

%CB0406 3 3251 COUNT_TASK4_DISABLE Disable count task 4

%CB0406 4 3252 COUNT_TASK5_DISABLE Disable count task 5

%CB0406 5 3253 COUNT_TASK6_DISABLE Disable count task 6

%CB0406 6 3254 COUNT_TASK7_DISABLE Disable count task 7

%CB0406 7 3255 COUNT_TASK8_DISABLE Disable count task 8

%CB0407 0 3256 COUNT_TASK9_DISABLE Disable count task 9

%CB0407 1 3257 COUNT_TASK10_DISABLE Disable count task 10

%CB0407 2 3258 COUNT_TASK11_DISABLE Disable count task 11

%CB0407 3 3259 COUNT_TASK12_DISABLE Disable count task 12

%CB0407 4 3260 COUNT_TASK13_DISABLE Disable count task 13

%CB0407 5 3261 COUNT_TASK14_DISABLE Disable count task 14

%CB0407 6 3262 COUNT_TASK15_DISABLE Disable count task 15

%CB0407 7 3263 COUNT_TASK16_DISABLE Disable count task 17

Ethernet

%CD0424 -- 3212 ETH_IP IP address

%CD0428 -- 3214 ETH_MASK Subnet Mask

%CD0432 -- 3216 ETH_GW Default gatew ay

%CB0436 -- 3218 (L) ETH_DHCP Enable DHCP

%CB0437 -- 3218 (H) ETH_SPD_DUP Ethernet Communication Mode

Modbus TCP

%CD0440 -- 3220 MBTCP_IP_AUTH IP Authentication

%CW0444 -- 3222 MBTCP_PORT TCP Server Modbus TCP

%CB0446 -- 3223 MBTCP_UNITID UnitID Modbus TCP server

%CW0448 -- 3224 MBTCP_GW_TOUT
Timeout for receipt of the slave Modbus RTU (Modbus TCP

Gatew ay)

%CW0452 -- 3226 MBTCP_DISABLE_COMM Disables the Modbus TCP client

SNTP

%CD0456 -- 3228 SNTP_IP1 SNTP Server IP Address

%CD0460 -- 3230 SNTP_IP2 SNTP Server IP Address

%CW0464 -- 3232 SNTP_UPD_FREQ SNTP update frequency

%CW0466 -- 3233 SNTP_TIMEOUT Timeout receiving SNTP

HMI Keys

%CB0468 0 3744 KEY_ALARM_DISABLE Disable the ALARM key

%CB0468 1 3745 KEY_HOME_DISABLE Disable the HOME key

%CB0468 2 3746 KEY_SETUP_DISABLE Disable the SETUP key

HMI LEDs

%CB0469 0 3752 LED_CUSTOM Enables w ritting to HMI's LEDs

%CB0469 1 3753 LED_F1 Enables HMI's F1 LED

%CB0469 2 3754 LED_F2 Enables HMI's F2 LED

%CB0469 3 3755 LED_F3 Enables HMI's F3 LED

%CB0469 4 3756 LED_F4 Enables HMI's F4 LED

%CB0469 5 3757 LED_F5 Enables HMI's F5 LED

%CB0469 6 3758 LED_F6 Enables HMI's F6 LED

Equipments (Devices)

WPS v2.5X | 760

11.8.5 Ladder

11.8.5.1 Coil

11.8.5.1.1 DIRECTCOIL

Logical block used to assign direct values of the output variables.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

Operation

The block transfers the value of A for the memory address corresponding to O1.

Diagram

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 761

The above example keeps the digital output DO9 permanently connected, because the value of A in
this case is the value of the left bus which is always considered high logic level (TRUE).

11.8.5.1.2 IMMEDIATECOIL

Logical block used for assigning values to standard digital outputs instantly.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

Operation

The block transfers the value of A for the digital output corresponding to O1.
Unlike the direct coil, this block does not wait until the end of the scan cycle so that the output value
is updated; this is done at the same time the block is activated.

NOTE!
This block only works with standard digital outputs of the product.

Compatibility

Device Version

PLC300 1.20 or higher

SCA06 2.00 or higher

Diagram

Block Flowchart

Equipments (Devices)

WPS v2.5X | 762

Example

The above example immediately activates the internal buzzer when it detects that the power of the
CANopen bus was stopped and remains on until the power is restored.

11.8.5.1.3 INVERTEDCOIL

Logical block used for assigning values denied to output variables.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

Operation

The block transfers the denied value of A for the memory address corresponding to O1.

Diagram

Block Flowchart

Equipments (Devices)

WPS v2.5X | 763

Example

The above example disables the digital output DO3 when some of the digital inputs DI1 and DI2 are
with FALSE value. When both inputs are with a TRUE value, DO3 activates.

11.8.5.1.4 RESETCOIL

Logical block used for indefinite disabling of output variables.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

Operation

When identifying a TRUE value in A, this block transfers a FALSE value to the memory address
corresponding to O1.
When identifying a FALSE value in A, this block performs no operation.

Diagram

Equipments (Devices)

WPS v2.5X | 764

Block Flowchart

Example

The example above activates permanently the system control marker that enables end-of-message
character in RS232 communication to identify a TRUE level at the digital input DI5.

11.8.5.1.5 SETCOIL

Logical block used for indefinite enabling of output variables.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

Operation

Equipments (Devices)

WPS v2.5X | 765

When identifying a TRUE value in A, this block transfers the value of A for the memory address
corresponding to O1.
When identifying a FALSE value in A, this block performs no operation.

Diagram

Block Flowchart

Example

The example above activates permanently the system control marker that enables end-of-message
character in RS232 communication to identify a TRUE level at the digital input DI6.

11.8.5.1.6 TOGGLECOIL

Logical block used for output variables alternance.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 766

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

VAR TOGGLECOIL_INST_0 TOGGLECOIL Instance of access to block structure

Operation

When identifying a transition from FALSE to TRUE (leading edge) on A, the block reverses the status
of O1.

Diagram

Block Flowchart

Example

The above example inverts the state of the digital output DO6 to each disabling the internal buzzer.

11.8.5.2 Communication Network

11.8.5.2.1 CANopen

11.8.5.2.1.1 CANopen Overview

Operation in the CANopen Network - Master Mode

Equipments (Devices)

WPS v2.5X | 767

Besides the operation as a slave, the PLC300 programmable controller also allows operation as a master for
the CANopen network. PLC300 characteristics and functions as a master for the CANopen network will be
described as follows.

Enabling Function CANopen Master

By default, PLC300 programmable controller is programmed to operate as a slave for the CANopen network.
Programming the equipment as a master for the network must be done by using the WSCAN software that
also allows the configuration of the whole CANopen network. A detailed description of the WSCAN software
windows and functions must be obtained in the menu "Help" in the software itself.

After the master configuration has been created, it is necessary to download the configurations by using one
of the product's programming interfaces - refer to the user manual for further information. Once programmed as
a master for the network, in case it is necessary to delete said configurations, the function to delete the user
program - available in the Setup menu - also deletes the CANopen master configurations.

NOTE!
CANopen network is a flexible network that allows several different ways of configuring and
operating. Nonetheless, such a flexibility requires the user to have a good knowledge of the
communication functions and objects used to configure the network, as well as knowledge of the
WSCAN programming software.

CANopen Master Characteristics

PLC300 programmable controller allows the control of a group of up to 63 slaves, using the following
communication tasks and resources:

Network management task (NMT)
63 transmission PDOs
63 reception PDOs
63 Heartbeat Consumers
Heartbeat Producer
SDO Client
SYNC producer/consumer
512 bytes of input network markers
512 bytes of output network markers

Physical characteristics - installation, connector, cable, etc. - are the same for PLC300 operating both as a
master and a slave. Address configurations and communication rate are also necessary for the operation as a
master, but these configurations are programmed by the WSCAN software according to the properties defined
for the master in the software itself.

NOTE!
Input network markers are used to map data in RPDOs, while output network markers are used
to map data in TPDOs. They can be accessed in Byte (%IB or %QB), Word (%IW or %QW), or
Double Word (%ID or %QD). Nonetheless, their function is not pre-defined and depends on the
Ladder application developed for the PLC300 controller.

Equipments (Devices)

WPS v2.5X | 768

Master Operation

Once programmed to operate as a master, the PLC300 programmable controller will perform the following
steps in order to perform the sequential initialization for each one of the slaves.

1. By sending the communication reset command to the whole network, so that the slaves initialize with
values known for the communication objects.

2. Equipment identification in the network, through the reading via SDO of the 1000h/00h object - Object
Identification.

3. Writing via SDO of all objects programmed for the slave, which usually include the configuration and
mapping of TPDOs and RPDOs, node guarding, heartbeat, besides the manufacturer's specific objects, in
case they are programmed.

4. Error control task initialized - node guarding or heartbeat - in case they are programmed.
5. Sending of the slave to the operating mode.

If one of these steps fails, communication error with the slave will be indicated. Depending on the
configurations, the initialization of slaves will be aborted, and the master will initialize the following slave,
returning to the slave presenting error, after trying to initialize all other slaves in the network.

Similarly, if during the operation of a slave, an error in the error control task is identified, depending on the
configurations made for the master, the slave will be automatically reset and the initialization procedure will be
performed over.

NOTE!
The communication state and the state of each slave can be observed in input system markers.

Blocks for the CANopen Master

Besides the communication and configuration objects made in the WSCAN software, blocks for the monitoring
and sending of commands, which can be used during the creation of the application in Ladder for the PLC300
programmable controller, are also available. It is not necessary to use said blocks during the equipment
operation, but its use provides more flexibility and facilitates the diagnosis of communication problems during
the PLC300 programmable controller operation.

11.8.5.2.1.2 CO_MasterControlStatus

Block that allows monitoring various statuses of the CANopen network master.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 769

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

DisableComm BOOL Disables CANopen communication

SendNMT BOOL Triggers management command sending

NMTCommand BYTE Management command code to be sent

NodeID BYTE USINT Slave address for sending the NMT

VAR_OUTPUT

Done BOOL Output enabling

CommDisabled BOOL Disabled communication f lag

BusPowerOff BOOL Flag of a pow er failure of CAN interface

BusOff BOOL Flag indicating BusOff error at the CAN interface

NMTCmdFeedback BOOL Flag of NMT command sent by the master

ErrorCtrlFailure BOOL
Flag indicating error of nodeguarding or heartbeat in a

slave netw ork

InitFailure BOOL
Flag indicating error in the initialization of the slavee

netw ork

InitFinished BOOL
Flag indicating the initialization of the slaves w as

completed

Operation

This block remains active while Execute is at TRUE level, updating its outputs according to the
monitoring of the master and input requests. When Execute receives FALSE level, the inputs are
ignored and the outputs are zeroed. The Done output receives TRUE level when Execute has TRUE
level and block finished its execution.

A TRUE level DisableComm disables the CANopen communication and resets the status counters
and markers of the master.

A leading edge on SendNMT sends a command management (NMT) indicated at NMTCommand to
the slave of NodeID address.

Outputs receive TRUE level when the status of the CANopen master matches description (disabled
communication, power failure, etc.).

Block Flowchart

Equipments (Devices)

WPS v2.5X | 770

Example

The example above requests status data of the CANopen network master, and allows disabling
communication through DISABLE and to send commands NMT to NODEID through SEND_COMM.
The block ends successfully, Done output is activated.

Equipments (Devices)

WPS v2.5X | 771

11.8.5.2.1.3 CO_SDORead

Block that performs a reading of data via SDO from a remote slave in CANopen network.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

NodeID# BYTE Slave address

Index# WORD Index of the object to be accessed in slave

SubIndex# BYTE Sub-index of the object

Size# BYTE Size of data accessed, in bytes

Timeout# WORD
Maximum w aiting time for arrival of data, from the

beginning of the request [ms]

VAR_OUTPUT

Done BOOL Output enabling

Active BOOL Aw aiting response f lag

Busy BOOL Flag of the SDO client is busy w ith another request

Error BOOL Error in the execution f lag

ErrorID BYTE USINT Identif ier of the occurred error

Value BYTE USINT Variable that stores the received data

VAR CO_SDOREAD_INST_0 CO_SDOREAD Instance of access to block structure

Operation

When this block detects a leading edge on Execute it checks whether the SDO client in the specified
NodeID # address is free to send data (Busy variable at FALSE level). If so, it sends the reading
request to the object of Size# size located in Index# and SubIndex# and sets the Active output,
resetting it when receiving the response from the slave. The received data is stored in the Value
variable. If the slave is not free, the block waits Busy go to FALSE level to resubmit the request.

NOTE!
If Execute goes to FALSE level and Busy is still at TRUE level, the request is canceled.

NOTE!
Value is an array of size equal to Size#. It is important to check this compatibility not to generate
errors in the block.

Equipments (Devices)

WPS v2.5X | 772

When Execute has FALSE value, Done remains FALSE. The Done output is only activated when the
block finishes executing successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Code Description

0 Executed successfully

1 Card cannot execute the function

2 Timeout in slave response

3 Slave returned error

Block Flowchart

Equipments (Devices)

WPS v2.5X | 773

Equipments (Devices)

WPS v2.5X | 774

Example

The example above requests reading of the data size SIZE, located in INDEX - SUBINDEX, of the
NODEID device. This data is forwarded to VALUE. The block ends successfully, Done output is
activated.

11.8.5.2.1.4 CO_SDOWrite

Block that performs a writing of data via SDO from a remote slave in CANopen network.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 775

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

NodeID# BYTE Slave address

Index# WORD Index of the object to be accessed in slave

SubIndex# BYTE Sub-index of the object

Size# BYTE Size of data accessed, in bytes

Timeout# WORD
Maximum w aiting time for arrival of data, from the

beginning of the request [ms]

Value BYTE USINT Variable that has the data to be w ritten

VAR_OUTPUT

Done BOOL Output enabling

Active BOOL Aw aiting response f lag

Busy BOOL Flag of the SDO client is busy w ith another request

Error BOOL Error in the execution f lag

ErrorID BYTE USINT Identif ier of the occurred error

VAR CO_SDOWRITE_INST_0 CO_SDOWRITE Instance of access to block structure

Operation

When this block detects a leading edge on Execute it checks whether the SDO client in the specified
NodeID # address is free to send data (Busy variable at FALSE level). If so, it sends the writing
request to the object of Size# size located in Index# and SubIndex# and sets the Active output,
resetting it when receiving the response from the slave. If the slave is not free, the block waits Busy
go to FALSE level to resubmit the request.

NOTE!
If Execute goes to FALSE level and Busy is still at TRUE level, the request is canceled.

NOTE!
Value is an array of size equal to Size#. It is important to check this compatibility not to generate
errors in the block.

When Execute has FALSE value, Done remains FALSE. The Done output is only activated when the
block finishes executing successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Code Description

0 Executed successfully

1 Card cannot execute the function

2 Timeout in slave response

3 Slave returned error

Block Flowchart

Equipments (Devices)

WPS v2.5X | 776

Equipments (Devices)

WPS v2.5X | 777

Example

The example above requests writing of the data size VALUE, located in INDEX - SUBINDEX, of the
NODEID device. The block ends successfully, Done output is activated.

11.8.5.2.1.5 CO_SlaveStatus

Block that allows monitoring various statuses of the CANopen network master.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
Execute BOOL Block enabling

NodeID BYTE USINT Slave address for monitoring

VAR_OUTPUT

Done BOOL Output enabling

ErrorCtrlFailure BOOL
Flag indicating error of nodeguarding or heartbeat in a

slave netw ork

InitFailure BOOL
Flag indicating error in the initialization of the slavee

netw ork

InitFinished BOOL
Flag indicating the initialization of the slaves w as

completed

ErrorCtrlStarted BOOL Flag of start of the error control service

ConfigDownloaded BOOL
Flag of success in the dow nload of SDO settings in the

slave

SlaveDetected BOOL Flag of success in reading slave ID via SDO

Operation

Equipments (Devices)

WPS v2.5X | 778

This block remains active while Execute is at TRUE level, updating its outputs according to the
monitoring of the slave. When Execute receives FALSE level, the inputs are ignored and the outputs
are zeroed. The Done output receives TRUE level when Execute has TRUE level and block finished its
execution.

Outputs receive TRUE level when the status of the CANopen slave indicated by address NodeID
matches description (boot error, download success, etc.).

Block Flowchart

Example

The example above requests data from the slave 20 of the CANopen network. The block ends
successfully, Done output is activated.

11.8.5.2.2 Modbus RTU

11.8.5.2.2.1 Modbus RTU Overview

Operation in the Modbus RTU Network - Master Mode

Besides the operation as a slave, the PLC300 programmable controller also allows operation as a master for
the Modbus RTU network. For this operation, it is necessary to observe the following points:

Equipments (Devices)

WPS v2.5X | 779

Only interface RS485 allows operation as a network master.
It is necessary to program, in product configurations, the operation mode as "Master", besides the
communication rate, parity, and stop bits, which must be the same for the whole equipment in the network.
The Modbus RTU network master does not have an address, so the address configured in the PLC300 is not
used.
Sending and receiving telegrams via RS485 interface using the Modbus RTU is programmed by using blocks
in Ladder programming language. It is necessary to know the available blocks and the Ladder programming
software in order to be able to program the network master.
The following functions are available for the sending of requisitions by the Modbus master:
o Function 01: Read Coils
o Function 02: Read Discrete Inputs
o Function 03: Read Holding Registers
o Function 04: Read Input Registers
o Function 05: Write Single Coil
o Function 06: Write Single Register
o Function 15: Write Multiple Coils
o Function 16: Write Multiple Registers

Blocks to program the master

In order to control and monitor the Modbus RTU communication using the PLC300 programmable controller,
the following blocks were developed, and they must be used when programming in Ladder.

11.8.5.2.2.2 MB_MasterControlStatus

Block that allows monitoring various statuses of the Modbus RTU network master.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 780

Variable Type Name Data Type Description

VAR_INPUT
Execute BOOL Block enabling

DisableComm BOOL Disables Modbus RTU communication

VAR_OUTPUT

Done BOOL Output enabling

CommDisabled BOOL Disabled communication f lag

TxCounter WORD UINT Counter of requests sent

RxCounter WORD UINT Counter of telegrams received

NoAnswerCounter WORD UINT Counter of requests not answ ered

ErrorResponseCounter WORD UINT
Counter of responses received w ith error

information

LastErrorSlaveAddress BYTE USINT
Slave address in w hich the last communication

error w as detected

LastErrorResult BYTE USINT

Operation result of the last communication error

received

(0 = No error)

(4 – Response Timeout)

(5 = Slave returned error)

LastErrorCode BYTE USINT Code of the last communication error received

Operation

This block remains active while Execute is at TRUE level, updating its outputs according to the
monitoring of the master and input requests. When Execute receives FALSE level, the inputs are
ignored and the outputs are zeroed. The Done output receives TRUE level when Execute has TRUE
level and block finished its execution.

A TRUE level DisableComm disables the Modbus RTU communication and resets the status counters
and markers of the master. These markers and counters are displayed in the output block each
having some data corresponding to its description. Their values are also cleared at shutdown of the
master.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 781

Example

The example above requests status data of the Modbus RTU network master, and allows disabling
communication through DISABLE. The block ends successfully, Done output is activated.

11.8.5.2.2.3 MB_ReadBinary

Block that performs a reading of up to 128 binary data (via Read Coils or Read Discrete Inputs) of a
slave on the Modbus RTU network.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 782

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

SlaveAddress BYTE Slave address

Function# BYTE Reading function code

InitialDataAddress WORD Initial bit address of the data to be read

NumberOfData BYTE Number of bits to be read (1 to 128)

Timeout# WORD
Maximum w aiting time for the slave response

[ms]

Offset# BOOL
Offset Indication in InitialDataAddress, i.e., need

to subtract 1 from this number

VAR_OUTPUT

Done BOOL Output enabling

Active BOOL Aw aiting response f lag

Busy BOOL
Flag indicating the RS485 interface is busy w ith

another request

Error BOOL Error in the execution f lag

ErrorID BYTE Identif ier of the occurred error

Value BOOL Variable that stores the received data

VAR MB_READBINARY_INST_0 MB_READBINARY Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it checks whether the Modbus slave RTU in
specified address in SlaveAddress is free to send data (Busy variable at FALSE level). If so, it sends
the reading request of a number of bits indicated by NumberOfData in InitialDataAddress address
using chosen function in Function# and sets the Active output, resetting it when receiving the
response from the slave. The received data is stored in the Value variable. If the slave is not free, the
block waits Busy go to FALSE level to resubmit the request.

NOTE!
If Execute goes to FALSE level and Busy is still at TRUE level, the request is canceled.

NOTE!
Value is an array of size equal to NumberOfData. It is important to check this compatibility not to
generate errors in the block.

Equipments (Devices)

WPS v2.5X | 783

When Execute has FALSE value, Done remains FALSE. The Done output is only activated when the
block finishes executing successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Code Description

0 Executed successfully

1 Invalid input data

2 Master not enabled

4 Timeout in slave response

5 Slave returned error

Block Flowchart

Equipments (Devices)

WPS v2.5X | 784

Equipments (Devices)

WPS v2.5X | 785

Example

The above example requests reading of a number of binary data described by DATA_COUNT
positioned in the INIT Modbus RTU slave of SLAVE address through the Read Discrete Input function.
These data are forwarded to VALUE. The block ends successfully, Done output is activated.

11.8.5.2.2.4 MB_ReadRegister

Block that performs a reading of up to 64 16-bit registers (via Read Holding Registers or Read Input
Registers) of a slave on the Modbus RTU network.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 786

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

SlaveAddress BYTE Slave address

Function# BYTE Reading function code

InitialDataAddress WORD Initial register address to be read

NumberOfData BYTE Number of registers to be read (1 to 64)

Timeout# WORD
Maximum w aiting time for the slave response

[ms]

Offset# BOOL
Offset Indication in InitialDataAddress, i.e., need

to subtract 1 from this number

VAR_OUTPUT

Done BOOL Output enabling

Active BOOL Aw aiting response f lag

Busy BOOL
Flag indicating the RS485 interface is busy w ith

another request

Error BOOL Error in the execution f lag

ErrorID BYTE Identif ier of the occurred error

Value

BYTE SINT USINT

WORD UINT INT

DWORD UDINT

DINT REAL

Variable that stores the received data

VAR
MB_READREGISTER

_INST_0
MB_READREGISTER Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it checks whether the Modbus RTU slave in
specified address in SlaveAddress is free to send data (Busy variable at FALSE level). If so, it sends
the reading request of a number of registers indicated by NumberOfData in InitialDataAddress address
using chosen function in Function# and sets the Active output, resetting them when receiving the
response from the slave. The received data is stored in the Value variable. If the slave is not free, the
block waits Busy go to FALSE level to resubmit the request.

NOTE!
If Execute goes to FALSE level and Busy is still at TRUE level, the request is canceled.

NOTE!
Value is an array of number of bits NumberOfData multiplied by 16. That is, if NumberOfData is
16, Value can be an array of 32 BYTE positions, 16 WORD positions or 8 DWORD positions. It
is important to check this compatibility not to generate errors in the block.

When Execute has FALSE value, Done remains FALSE. The Done output is only activated when the
block finishes executing successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Equipments (Devices)

WPS v2.5X | 787

Code Description

0 Executed successfully

1 Invalid input data

2 Master not enabled

4 Timeout in slave response

5 Slave returned error

Block Flowchart

Equipments (Devices)

WPS v2.5X | 788

Equipments (Devices)

WPS v2.5X | 789

Example

The above example requests reading of a number of binary data described by DATA_COUNT
positioned in the INIT in the Modbus RTU slave of SLAVE address through the Read Input Register
function. These data are forwarded to VALUE. The block ends successfully, Done output is activated.

11.8.5.2.2.5 MB_SlaveStatus

Block that allows monitoring the status of 4 slaves of the Modbus RTU network.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

ErrorsToSetOffline# BYTE
Amount of errors that the master must identify until it

considers communication w ith an off line slave

AddressSlave1# BYTE Slave address 1 to be monitored

AddressSlave2# BYTE Slave address 2 to be monitored

AddressSlave3# BYTE Slave address 3 to be monitored

AddressSlave4# BYTE Slave address 4 to be monitored

VAR_OUTPUT

Done BOOL Output enabling

GeneralOffline BOOL
Flag indicating any one of the monitored

communication is off line

Slave1Offline BOOL Flag of off line status slave 1

Slave2Offline BOOL Flag of off line status slave 2

Slave3Offline BOOL Flag of off line status slave 3

Slave4Offline BOOL Flag of off line status slave 4

Equipments (Devices)

WPS v2.5X | 790

Operation

This block remains active while Execute is at TRUE level, updating its outputs according to the
number of errors recorded for each slave. When Execute receives FALSE level, the inputs are ignored
and the outputs are zeroed. The Done output receives TRUE level when Execute has TRUE level and
block finished its execution.

The ErrorsToSetOffline # input allows registering the number of errors identified in a slave that will
feature an offline communication. AddressSlave inputs allow inserting four slave addresses to be
monitored. When this monitored slave reports the programmed number of errors, its corresponding
SlaveOffline output is set to TRUE level. If any of SlaveOffline outputs is at TRUE level, GeneralOffline
also receives TRUE level.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 791

The above example checks the number of error responses sent by the slaves 2, 4, 6 and 8 of the
Modbus RTU. If any of them is greater than 5, its SX_OFF status is led to TRUE level. The block ends
successfully, Done output is activated.

11.8.5.2.2.6 MB_WriteBinary

Block that performs a writing of up to 128 binary data (via Write Single Coil or Write Multiple Coils) in
a slave on the Modbus RTU network.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 792

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

SlaveAddress BYTE Slave address

Function# BYTE Writing function code

InitialDataAddress WORD Initial bit address w here the data w ill be w ritten

NumberOfData BYTE Number of bits to be w ritten (1 to 128)

Timeout# WORD Maximum w aiting time for the slave response [ms]

Offset# BOOL
Offset Indication in InitialDataAddress, i.e., need to

subtract 1 from this number

Value BOOL Variable that stores the data to be w ritten

VAR_OUTPUT

Done BOOL Output enabling

Active BOOL Aw aiting response f lag

Busy BOOL
Flag indicating the RS485 interface is busy w ith

another request

Error BOOL Error in the execution f lag

ErrorID BYTE Identif ier of the occurred error

VAR
MB_WRITEBINARY

_INST_0
MB_WRITEBINARY Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it checks whether the Modbus RTU slave in
specified address in SlaveAddress is free to send data (Busy variable at FALSE level). If so, it sends
the writing request of a number of bits indicated by NumberOfData in InitialDataAddress address
using chosen function in Function# and sets the Active output, resetting it when receiving the
response from the slave. If the slave is not free, the block waits Busy go to FALSE level to resubmit
the request.

NOTE!
If Execute goes to FALSE level and Busy is still at TRUE level, the request is canceled.

NOTE!
Value is an array of size equal to NumberOfData. It is important to check this compatibility not to
generate errors in the block.

When Execute has FALSE value, Done remains FALSE. The Done output is only activated when the
block finishes executing successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Equipments (Devices)

WPS v2.5X | 793

Code Description

0 Executed successfully

1 Invalid input data

2 Master not enabled

4 Timeout in slave response

5 Slave returned error

Block Flowchart

Equipments (Devices)

WPS v2.5X | 794

Equipments (Devices)

WPS v2.5X | 795

Example

The example above requests written data contained in VALUE, with size described by DATA_COUNT,
at addresses positioned from INIT on Modbus RTU slave at address SLAVE using the function Write
Single Coil. The block ends successfully, Done output is activated.

11.8.5.2.2.7 MB_WriteRegister

Block that performs a reading of up to sixteen 16-bit registers (via Write Single Register or Write
Multiple Registers) of a slave on the Modbus RTU network.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 796

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

SlaveAddress BYTE Slave address

Function# BYTE Writing function code

InitialDataAddress WORD Initial register address to be w ritten

NumberOfData BYTE Number of registers to be w ritten (1 to 16)

Timeout# WORD
Maximum w aiting time for the slave response

[ms]

Offset# BOOL
Offset Indication in InitialDataAddress, i.e.,

need to subtract 1 from this number

Value

BYTE SINT USINT

WORD UINT INT

DWORD UDINT DINT

REAL

Variable that stores the data to be w ritten

VAR_OUTPUT

Done BOOL Output enabling

Active BOOL Aw aiting response f lag

Busy BOOL
Flag indicating the RS485 interface is busy

w ith another request

Error BOOL Error in the execution f lag

ErrorID BYTE Identif ier of the occurred error

VAR
MB_WRITEREGISTER

_INST_0
MB_WRITEREGISTER Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it checks whether the Modbus RTU slave in
specified address in SlaveAddress is free to send data (Busy variable at FALSE level). If so, it sends
the writing request of Value values in a number of registers indicated by NumberOfData in
InitialDataAddress address using chosen function in Function# and sets the Active output, resetting it
when receiving the response from the slave. If the slave is not free, the block waits Busy go to FALSE
level to resubmit the request.

NOTE!
If Execute goes to FALSE level and Busy is still at TRUE level, the request is canceled.

NOTE!
Value is an array of number of bits NumberOfData multiplied by 16. That is, if NumberOfData is
16, Value can be an array of 32 BYTE positions, 16 WORD positions or 8 DWORD positions. It
is important to check this compatibility not to generate errors in the block.

When Execute has FALSE value, Done remains FALSE. The Done output is only activated when the
block finishes executing successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Equipments (Devices)

WPS v2.5X | 797

Code Description

0 Executed successfully

1 Invalid input data

2 Master not enabled

4 Timeout in slave response

5 Slave returned error

Block Flowchart

Equipments (Devices)

WPS v2.5X | 798

Equipments (Devices)

WPS v2.5X | 799

Example

The example above requests written data contained in VALUE, with size described by DATA_COUNT,
at addresses positioned from INIT on Modbus RTU slave at address SLAVE using the function Write
Single Register. The block ends successfully, Done output is activated.

11.8.5.2.3 Modbus TCP

11.8.5.2.3.1 Modbus TCP Overview

Operation in Modbus TCP Network – Client Mode

Besides the operation as server, the programmable controller PLC300 also allows the operation as client of the
Modbus TCP network. For this operation, it is necessary to observe the following points:

The sending and receiving of telegrams via Ethernet interface using the Modbus TCP protocol is
programmed by using blocks in Ladder programming language. It is necessary to know the available blocks
and the Ladder programming software in order to program the network client.
The following functions are available to send requests by the Modbus TCP client:
o Function 01: Read Coils
o Function 02: Read Discrete Inputs
o Function 03: Read Holding Registers
o Function 04: Read Input Registers
o Function 05: Write Single Coil
o Function 06: Write Single Register
o Function 15: Write Multiple Coil
o Function 16: Write Multiple Registers

Blocks for Programming of the Client

In order to control and monitor Modbus TCP communication using the programmable controller PLC300, the
following blocks were developed, which must be used during Ladder programming.

11.8.5.2.3.2 MBTCP_ClientControlStatus

Block that allows monitoring various statuses of the Modbus TCP network client.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 800

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
Execute BOOL Block enabling

DisableComm BOOL Disables Modbus TCP communication

VAR_OUTPUT

Done BOOL Output enabling

CommDisabled BOOL Disabled communication f lag

TxCounter WORD UINT Counter of requests sent

RxCounter WORD UINT Counter of telegrams received

NoAnswerCounter WORD UINT Counter of requests not answ ered

ErrorResponseCounter WORD UINT
Counter of responses received w ith error

information

LastErrorServerAddress DWORD
Server address in w hich the last communication

error w as detected

LastErrorServerPort WORD UINT
Server port in w hich the last communication error

w as detected

LastErrorUnitID BYTE USINT
Server UnitID in w hich the last communication

error w as detected

LastErrorResult BYTE USINT

Operation result of the last communication error

received

(0 - No error)

(4 - Server response timeout)

(5 - Server returned error)

(6 - Connection to server has failed)

(7 - TCP/IP Connection ended prematurely)

LastErrorCode BYTE USINT Code of the last communication error received

Operation

This block remains active while Execute is at TRUE level, updating its outputs according to the
monitoring of the master and input requests. When Execute receives FALSE level, the inputs are
ignored and the outputs are zeroed. The Done output receives TRUE level when Execute has TRUE
level and block finished its execution.

A TRUE level DisableComm disables the Modbus TCP communication and resets the status counters

Equipments (Devices)

WPS v2.5X | 801

and markers of the client. These markers and counters are displayed in the output block each having
some data corresponding to its description. Their values are also cleared at shutdown of the client.

Compatibility

Device Version

PLC300 1.30 or higher

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 802

The example above requests status data of the Modbus RTU network client, and allows disabling
communication through DISABLE. The block ends successfully, Done output is activated.

11.8.5.2.3.3 MBTCP_ReadBinary

Block that performs a reading of up to 128 binary data (via Read Coils or Read Discrete Inputs) of a
server on the Modbus TCP network.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 803

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

ServerAddress DWORD
Server IP address

(Ex: 192.168.0.1)

ServerPort WORD
Modbus TCP Port of the server

(Standard: 502)

UnitID BYTE
UnitID do servidor

(Standard: 255)

Function# BYTE Reading function code

InitialDataAddress WORD Initial bit address of the data to be read

NumberOfData BYTE Number of bits to be read (1 to 128)

Timeout# WORD
Maximum w aiting time for the server response

[ms]

Offset# BOOL
Offset Indication in InitialDataAddress, i.e., need

to subtract 1 from this number

VAR_OUTPUT

Done BOOL Output enabling

Active BOOL Aw aiting response f lag

Busy BOOL
Flag indicating the connection is busy w ith

another request

Error BOOL Error in the execution f lag

ErrorID BYTE Identif ier of the occurred error

Value BOOL Variable that stores the received data

VAR
MBTCP_READBINARY

_INST_0
MBTCP_READBINARY Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it checks whether the Modbus TCP server in
specified address in ServerAddress is free to send data (Busy variable at FALSE level). If so, it sends
the reading request of a number of bits indicated by NumberOfData in InitialDataAddress address
using chosen function in Function# and sets the Active output, resetting it when receiving the
response from the server. The received data is stored in the Value variable. If the server is not free, the
block waits Busy go to FALSE level to resubmit the request.

NOTE!
If Execute goes to FALSE level and Busy is still at TRUE level, the request is canceled.

NOTE!
Value is an array of size equal to NumberOfData. It is important to check this compatibility not to
generate errors in the block.

When Execute has FALSE value, Done remains FALSE. The Done output is only activated when the
block finishes executing successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Equipments (Devices)

WPS v2.5X | 804

Code Description

0 Executed successfully

1 Invalid input data

2 Client not enabled

4 Timeout in server response

5 Server returned error

6 Failed to connect to server

7 TCP/IP connection terminated prematurely

Compatibility

Device Version

PLC300 1.30 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 805

Equipments (Devices)

WPS v2.5X | 806

Example

The above example requests reading of a number of binary data described by DATA_COUNT
positioned in the INIT – 1 in Modbus TCP server of SERVER:PORT address through the Read
Discrete Input function. These data are forwarded to VALUE. The block ends successfully, Done
output is activated.

11.8.5.2.3.4 MBTCP_ReadRegister

Block that performs a reading of up to 64 16-bit registers (via Read Holding Registers or Read Input
Registers) of a server on the Modbus TCP network.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 807

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

ServerAddress DWORD
Server IP address

(Ex: 192.168.0.1)

ServerPort WORD
Modbus TCP Port of the server

(Standard: 502)

UnitID BYTE
UnitID do servidor

(Standard: 255)

Function# BYTE Reading function code

InitialDataAddress WORD Initial register address to be read

NumberOfData BYTE Number of registers to be read (1 to 64)

Timeout# WORD
Maximum w aiting time for the server

response [ms]

Offset# BOOL
Offset Indication in InitialDataAddress, i.e.,

need to subtract 1 from this number

VAR_OUTPUT

Done BOOL Output enabling

Active BOOL Aw aiting response f lag

Busy BOOL
Flag indicating the connection is busy w ith

another request

Error BOOL Error in the execution f lag

ErrorID BYTE Identif ier of the occurred error

Value

BYTE SINT USINT

WORD UINT INT

DWORD UDINT DINT

REAL

Variable that stores the received data

VAR
MBTCP_READREGISTER

_INST_0
MBTCP_READREGISTER Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it checks whether the Modbus TCP server in
specified address in ServerAddress is free to send data (Busy variable at FALSE level). If so, it sends
the reading request of a number of registers indicated by NumberOfData in InitialDataAddress address
using chosen function in Function# and sets the Active output, resetting it when receiving the
response from the server. The received data is stored in the Value variable. If the server is not free, the
block waits Busy go to FALSE level to resubmit the request.

NOTE!
If Execute goes to FALSE level and Busy is still at TRUE level, the request is canceled.

NOTE!
Value is an array of number of bits NumberOfData multiplied by 16. That is, if NumberOfData is
16, Value can be an array of 32 BYTE positions, 16 WORD positions or 8 DWORD positions. It
is important to check this compatibility not to generate errors in the block.

When Execute has FALSE value, Done remains FALSE. The Done output is only activated when the
block finishes executing successfully, remaining at TRUE level until Execute receives FALSE.

Equipments (Devices)

WPS v2.5X | 808

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Code Description

0 Executed successfully

1 Invalid input data

2 Client not enabled

4 Timeout in server response

5 Server returned error

6 Failed to connect to server

7 TCP/IP connection terminated prematurely

Compatibility

Device Version

PLC300 1.30 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 809

Equipments (Devices)

WPS v2.5X | 810

Example

The above example requests reading of a number of register data described by DATA_COUNT
positioned in the INIT1 in Modbus TCP server of SERVER:PORT address through the Read Holding
Register function. These data are forwarded to VALUE. The block ends successfully, Done output is
activated.

11.8.5.2.3.5 MBTCP_ServerStatus

Block that allows monitoring the status of 4 servers of the Modbus TCP network.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 811

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

ErrorsToSetOffline# BYTE
Amount of errors that the must be identif ied until it

considers communication w ith an off line server

ServerAddress1# DWORD
Server 1 address to be monitored

(Ex: 192.168.0.1)

PortAddress1# WORD
Server 1 port to be monitored

(Standard: 502)

UnitID1# BYTE
Server 1 UnitID to be monitored

(Standard: 255)

ServerAddress2# DWORD
Server 2 address to be monitored

(Ex: 192.168.0.1)

PortAddress2# WORD
Server 2 port to be monitored

(Standard: 502)

UnitID2# BYTE
Server 2 UnitID to be monitored

(Standard: 255)

ServerAddress3# DWORD
Server 3 address to be monitored

(Ex: 192.168.0.1)

PortAddress3# WORD
Server 3 port to be monitored

(Standard: 502)

UnitID3# BYTE
Server 3 UnitID to be monitored

(Standard: 255)

ServerAddress4# DWORD
Server 4 address to be monitored

(Ex: 192.168.0.1)

PortAddress4# WORD
Server 4 port to be monitored

(Standard: 502)

UnitID4# BYTE
Server 4 UnitID to be monitored

(Standard: 255)

VAR_OUTPUT

Done BOOL Output enabling

GeneralOffline BOOL
Flag indicating any one of the monitored

communication is off line

Server1Offline BOOL Flag of off line status for server 1

Server2Offline BOOL Flag of off line status for server 2

Server3Offline BOOL Flag of off line status for server 3

Server4Offline BOOL Flag of off line status for server 4

Operation

This block remains active while Execute is at TRUE level, updating its outputs according to the
monitoring of the number of errors recorded for each server. When Execute receives FALSE level, the
inputs are ignored and the outputs are zeroed. The Done output receives TRUE level when Execute
has TRUE level and block finished its execution.

The ErrorsToSetOffline # input allows registering the number of errors identified in a server that will
feature an offline communication. AddressServer inputs allow inserting four server addresses to be
monitored. If you want to leave a channel ignored, enter the value 0 in the server address. When this
monitored server reports the programmed number of errors, its corresponding SlaveOffline output is
set to TRUE level. If any of SlaveOffline outputs is at TRUE level, GeneralOffline also receives TRUE

Equipments (Devices)

WPS v2.5X | 812

level.

Compatibility

Device Version

PLC300 1.30 or higher

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 813

The above example checks the number of error responses sent by the servers 192.168.10.100:502
and 192.168.10.102:502 of the Modbus TCP network. If any of them is greater than 40, its SX_OFF
status is led to TRUE level. The block ends successfully, Done output is activated.

11.8.5.2.3.6 MBTCP_WriteBinary

Block that performs a writing of up to 128 binary data (via Write Single Coil or Write Multiple Coils) in
a server on the Modbus TCP network.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 814

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

ServerAddress DWORD
Server IP address

(Ex: 192.168.0.1)

ServerPort WORD
Modbus TCP Port of the server

(Standard: 502)

UnitID BYTE
UnitID do servidor

(Standard: 255)

Function# BYTE Writing function code

InitialDataAddress WORD Initial bit address w here the data w ill be w ritten

NumberOfData BYTE Number of bits to be w ritten (1 to 128)

Timeout# WORD
Maximum w aiting time for the server response

[ms]

Offset# BOOL
Offset Indication in InitialDataAddress, i.e.,

need to subtract 1 from this number

Value BOOL Variable that stores the data to be w ritten

VAR_OUTPUT

Done BOOL Output enabling

Active BOOL Aw aiting response f lag

Busy BOOL
Flag indicating the connection is busy w ith

another request

Error BOOL Error in the execution f lag

ErrorID BYTE Identif ier of the occurred error

VAR
MBTCP_WRITEBINARY

_INST_0
MBTCP_WRITEBINARY Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it checks whether the Modbus TCP server in
specified address in ServerAddress is free to send data (Busy variable at FALSE level). If so, it sends
the writing request of the Value values in a number of bits indicated by NumberOfData in
InitialDataAddress address using chosen function in Function# and sets the Active output, resetting it
when receiving the response from the server. If the server is not free, the block waits Busy go to
FALSE level to resubmit the request.

NOTE!
If Execute goes to FALSE level and Busy is still at TRUE level, the request is canceled.

NOTE!
Value is an array of size equal to NumberOfData. It is important to check this compatibility not to
generate errors in the block.

When Execute has FALSE value, Done remains FALSE. The Done output is only activated when the
block finishes executing successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Equipments (Devices)

WPS v2.5X | 815

Code Description

0 Executed successfully

1 Invalid input data

2 Client not enabled

4 Timeout in server response

5 Server returned error

6 Failed to connect to server

7 TCP/IP connection terminated prematurely

Compatibility

Device Version

PLC300 1.30 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 816

Equipments (Devices)

WPS v2.5X | 817

Example

The example above requests written data contained in VALUE, with size described by DATA_COUNT,
at addresses positioned from INIT on Modbus TCP server at SERVER:PORT address using the
function Write Single Coil. The block ends successfully, Done output is activated.

11.8.5.2.3.7 MBTCP_WriteRegister

Block that performs a writing of up to sixteen 16-bit registers (via Write Single Register or Write
Multiple Registers) of a server on the Modbus TCP network.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 818

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

ServerAddress DWORD
Server IP address

(Ex: 192.168.0.1)

ServerPort WORD
Modbus TCP Port of the server

(Standard: 502)

UnitID BYTE
UnitID do servidor

(Standard: 255)

Function# BYTE Writing function code

InitialDataAddress WORD Initial register address to be w ritten

NumberOfData BYTE Number of registers to be w ritten (1 to 16)

Timeout# WORD
Maximum w aiting time for the server

response [ms]

Offset# BOOL
Offset Indication in InitialDataAddress, i.e.,

need to subtract 1 from this number

Value

BYTE SINT USINT

WORD UINT INT

DWORD UDINT DINT

REAL

Variable that stores the data to be w ritten

VAR_OUTPUT

Done BOOL Output enabling

Active BOOL Aw aiting response f lag

Busy BOOL
Flag indicating the connection is busy w ith

another request

Error BOOL Error in the execution f lag

ErrorID BYTE Identif ier of the occurred error

VAR
MB_TCPWRITEREGISTER

_INST_0
MB_TCPWRITEREGISTER Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it checks whether the Modbus TCP server in
specified address in ServerAddress is free to send data (Busy variable at FALSE level). If so, it sends
the writing request of Value values in a number of registers indicated by NumberOfData in
InitialDataAddress address using chosen function in Function# and sets the Active output, resetting it
when receiving the response from the server. If the server is not free, the block waits Busy go to
FALSE level to resubmit the request.

NOTE!
If Execute goes to FALSE level and Busy is still at TRUE level, the request is canceled.

NOTE!
Value is an array of number of bits NumberOfData multiplied by 16. That is, if NumberOfData is
16, Value can be an array of 32 BYTE positions, 16 WORD positions or 8 DWORD positions. It
is important to check this compatibility not to generate errors in the block.

When Execute has FALSE value, Done remains FALSE. The Done output is only activated when the
block finishes executing successfully, remaining at TRUE level until Execute receives FALSE.

Equipments (Devices)

WPS v2.5X | 819

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Code Description

0 Executed successfully

1 Invalid input data

2 Client not enabled

4 Timeout in server response

5 Server returned error

6 Failed to connect to server

7 TCP/IP connection terminated prematurely

Compatibility

Device Version

PLC300 1.30 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 820

Equipments (Devices)

WPS v2.5X | 821

Example

The example above requests written data contained in VALUE, with size described by DATA_COUNT,
at addresses positioned from INIT on Modbus TCP server at SERVER:PORT address using the
function Write Multiple Registers. The block ends successfully, Done output is activated.

11.8.5.3 Compare

11.8.5.3.1 COMP_EQ

Block that compares the values of Value1 and Value2, enabling the output Q if both are equal.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of equality

Operation

When this block has a TRUE value in EN, it sends to the output Q the TRUE value if Value1 and
Value2 are the same. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 822

Example

The example above checks equality between VALUE1 and VALUE2. Since both variables have the
same value, the Q output is activated.

The example above checks equality between VALUE1 and VALUE2. Since both variables have the
same value, the Q output is activated. Notice that the types of the input variables can be different
without causing execution problems.

Equipments (Devices)

WPS v2.5X | 823

The example above checks equality between VALUE1 and VALUE2. Since both variables have
different values, the Q output is disabled.

11.8.5.3.2 COMP_GE

Block that compares the values of Value1 and Value2, enabling the output Q if Value1 is higher than
or equal to Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of equality or majority of Value1

Operation

When this block has a TRUE value in EN it sends the Q output to the TRUE value if Value1 is higher
than or equal to Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 824

Example

The example above checks equality or majority of VALUE1 in relation to VALUE2. Since VALUE1
has lower value than VALUE2, the Q output is disabled.

The example above checks equality or majority of VALUE1 in relation to VALUE2. Since both
variables have the same value, the Q output is activated.

Equipments (Devices)

WPS v2.5X | 825

The example above checks equality or majority of VALUE1 in relation to VALUE2. Since VALUE1
has higher value than VALUE2, the Q output is activated.

11.8.5.3.3 COMP_GT

Block that compares the values of Value1 and Value2, enabling the output Q if Value1 is higher than
Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of majority of Value1

Operation

When this block has a TRUE value in EN, it sends to the Q output the TRUE value if Value1 is higher
than Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 826

Example

The example above checks the majority of VALUE1 in relation to VALUE2. Since VALUE1 has lower
value than VALUE2, the Q output is disabled.

The example above checks the majority of VALUE1 in relation to VALUE2. Since both variables have
the same value, the Q output is disabled.

Equipments (Devices)

WPS v2.5X | 827

The example above checks the majority of VALUE1 in relation to VALUE2. Since VALUE1 has higher
value than VALUE2, the Q output is activated.

11.8.5.3.4 COMP_LE

Block that compares the values of Value1 and Value2, enabling the output Q if Value1 is lower than or
equal to Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of equality or minority of Value1

Operation

When this block has a TRUE value in EN, it sends to the Q output the TRUE value if Value1 is lower
than or equal to Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 828

Example

The example above checks equality or minority of VALUE1 in relation to VALUE2. Since VALUE1
has lower value than VALUE2, the Q output is activated.

The example above checks equality or minority of VALUE1 in relation to VALUE2. Since both
variables have the same value, the Q output is activated.

Equipments (Devices)

WPS v2.5X | 829

The example above checks equality or minority of VALUE1 in relation to VALUE2. Since VALUE1
has higher value than VALUE2, the Q output is disabled.

11.8.5.3.5 COMP_LT

Block that compares the values of Value1 and Value2, enabling the output Q if Value1 is lower than
Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of minority of Value1

Operation

When this block has a TRUE value in EN, it sends to the Q output the TRUE value if Value1 is lower
than or equal to Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 830

Example

The example above checks minority of VALUE1 in relation to VALUE2. Since VALUE1 has lower
value than VALUE2, the Q output is activated.

The example above checks the minority of VALUE1 in relation to VALUE2. Since both variables have
the same value, the Q output is disabled.

Equipments (Devices)

WPS v2.5X | 831

The example above checks the minority of VALUE1 in relation to VALUE2. Since VALUE1 has higher
value than VALUE2, the Q output is disabled.

11.8.5.3.6 COMP_NE

Block that compares the values of Value1 and Value2, enabling the Q output if Value1 is different from
Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of inequality

Operation

When this block has a TRUE value in EN, it sends to the Q output the TRUE value if Value1 is
different from Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 832

Example

The example above checks inequality between VALUE1 and VALUE2. Since both variables have
different values, the Q output is activated.

The example above checks equality between VALUE1 and VALUE2. Since both variables have the
same value, the Q output is disabled.

11.8.5.4 Contact

11.8.5.4.1 NCCONTACT

Normally closed contact.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 833

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT I1 BOOL Block control input

Operation

When variable I1 is with TRUE value, B receives FALSE.
When variable I1 is with FALSE value, B receives the value of A.

NOTE!
Watch out for series and parallel associations of contacts. Refer to section Contact Logic for
further information.

Diagram

Block Flowchart

Equipments (Devices)

WPS v2.5X | 834

Example

The above example performs the transfer of the opposite value of digital input DI1 to the digital output
DO2.

11.8.5.4.2 NOCONTACT

Normally open contact.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT I1 BOOL Block control input

Operation

When variable I1 is with FALSE value, B receives FALSE.
When variable I1 is with TRUE value, B receives the value of A.

NOTE!
Watch out for series and parallel associations of contacts. Refer to section Contact Logic for
further information.

Diagram

Block Flowchart

Equipments (Devices)

WPS v2.5X | 835

Example

The above example performs the transfer of the value of digital input DI1 to the digital output DO2.

11.8.5.4.3 NTSCONTACT

Falling edge transition contact.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT I1 BOOL Block control input

VAR NTSCONTACT_INST_0 NTSCONTACT Instance of access to block structure

Operation

At the instant the variable I1 transitions from TRUE to FALSE (falling edge or negative edge
transition), B receives the value of A for a scan cycle.
At all other times, B receives the FALSE value.

NOTE!
Watch out for series and parallel associations of contacts. Refer to section Contact Logic for
further information.

Diagram

Equipments (Devices)

WPS v2.5X | 836

Block Flowchart

Example

The above example resets the digital output DO1 if the SHIFT key is pressed or a positive pulse on
the digital input DI2 is given.

11.8.5.4.4 PTSCONTACT

Leading edge transition contact.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 837

Variable Type Name Data Type Description

VAR_INPUT I1 BOOL Block control input

VAR PTSCONTACT_INST_0 PTSCONTACT Instance of access to block structure

Operation

At the instant the variable I1 transitions from FALSE to TRUE (leading edge or positive edge
transition), B receives the value of A for a scan cycle.
At all other times, B receives the FALSE value.

NOTE!
Watch out for series and parallel associations of contacts. Refer to section Contact Logic for
further information.

Diagram

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 838

The above example resets the digital output DO1 if the SHIFT key is pressed and a positive pulse on
the digital input DI2 is given.

11.8.5.5 Control

11.8.5.5.1 PID

Block that performs the function of a discrete PID controller. From the input variables, it calculates the
corresponding controller output.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 839

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

SetPoint REAL Automatic reference (pre-control)

ManualSetPoint REAL Forced reference (post control)

SelectSetPoint BOOL Selects w hich reference to use

Feedback REAL Feedback loop variable

MinimumOutput REAL Minimum value of the controller output

MaximumOutput REAL Maximum value of the controller output

Kp REAL Proportional gain

Ki REAL Integral gain

Kd REAL Derivative gain

TauSetPoint# REAL Time constant of the automatic reference in put f ilter

Type# BYTE Controller type

Action# BYTE Control action

Ts# UINT Sampling time [ms]

VAR_OUTPUT
ENO BOOL Output enabling

Output REAL Controller output

VAR PID_INST_0 PID Instance of access to block structure

Operation

On the positive transition edge in EN, Output receives zero value, and the block executes its
functionality as EN is at TRUE level.

When enabled, this block performs a routine PID control with the Kp, Ki and Kd parameters chosen.
The PID topology used may be the Academic or Parallel, depending on what is chosen in Type#.

Academic Form:

Parallel Form:

Equipments (Devices)

WPS v2.5X | 840

The levels of the output signal of the controller are saturated at value MinimumOutput and
MaximumOutput. The SelectSetPoint input level FALSE causes the SetPoint reference be adopted,
allowing the controller maintains control over the process. When SelectSetPoint goes to TRUE level,
the controller has no more domain, and ManualSetPoint becomes to be considered the output signal
of the controller.

Action# will define the feedback operation. If Action# is DIRECT, the operation will be SetPoint –
Feedback. If Action# is REVERSE, the operation will be Feedback – SetPoint.

Feedback receives the process variable considered as the plant output. Ts# receives the sampling
time for the controller and # TauSetPoint receives the time constant for the input filter of the automatic
reference.

When EN has FALSE value, Output remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

NOTE!
Effects of the alteration of gains on the process

If Kp decreases, the process becomes slower; generally more stable or less oscillating; it has
less overshoot.
If Kp increases, the process responds faster; it may become more unstable or more
oscillating; it has more overshoot.
If Ki decreases, the process becomes slower, lagging to reach the "SetPoint"; it becomes
more stable or less oscillating; it has less overshoot.
If Ki increases, the process becomes faster, quickly reaching the "SetPoint"; it becomes more
unstable or more oscillating; it has more overshoot.
If Kd decreases, the process becomes slower; it has less overshoot.
If Kd increases, it has more overshoot.

Equipments (Devices)

WPS v2.5X | 841

NOTE!
How to improve the performance of the process through the adjustment of gains (valid for the
Academic PID)

If the performance of the process is almost good, but the overshoot is a bit high, try to: (1)
decrease Kp 20%, (2) decrease Ki 20% and/or (3) decrease Kd 50%.
If the performance of the process is almost good, but it does not have overshoot and lags to
reach the "SetPoint", try to: (1) increase Kp 20%, (2) increase Ki 20% and/or (3) increase Kd
50%.
If the performance of the process is good, but the process output is varying too much, try to:
(1) increase Kd 50%, (2) decrease Kp 20%.
If the performance of the process is bad, i.e. after start up, the transitory lasts several periods
of oscillation that reduce very slowly or never reduce at all, try to: (1) decrease Kp 50%.
If the performance of the process is bad, i.e. after start up it slowly moves towards the
"SetPoint" without overshoot, but is still very far and the process output is less than the rated
value, try to: (1) increase Kp 50%, (2) increase Ki 50%, (3) increase Kd 70%.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 842

Equipments (Devices)

WPS v2.5X | 843

Example

The above example creates a loop of a digital PID form with sampling time 50 ms, using the
constants KP, KI and KD for control. Automatic reference SETPOINT, filtered by a first order filter with
time constant of 0:01 is used. The error signal is calculated as the difference between the filtered
reference and variable SAIDA_PLANTA. The controller output is saturated between the values 0.1 and
2.5 and sent to the variable ENTRADA_PLANTA.

11.8.5.5.2 PID2

Block that performs auto tuning of a discrete PID controller. From the input variables, it calculates the
corresponding controller output PID or PI throw relay method. This block also implements the
obtained controller or another that the user wishes.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 844

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enable

SetPoint REAL Automatic reference (pre-control)

ManualSetPoin

t
REAL Forced reference (post-control)

SelectSetPoin

t
BOOL Select w hich reference to use

Feedback REAL Mesh Feedback Variable

MinimumOutput REAL Minimum value of controller output

MaximumOutput REAL Maximum value of controller output

Kp REAL Proportional gain

Ki REAL Integral gain

Kd REAL Derivative Gain

TauSetPoint# REAL Auto reference input f ilter time constant

Type# BYTE Controller Type

Action# BYTE Control action

Ts# UINT Sampling period [ms]

Tune BYTE It starts the tuning process according to Table 2

Delta REAL
Parameter of the method of the relays that represents the

variation of the manipulated variable w ith respect to the value that

Equipments (Devices)

WPS v2.5X | 845

reached the reference.

Hysteresis REAL Determines the hysteresis in the sw itching of the Relay

TuneTimeOut DWORD Maximum w ait time until tuning is complete [ms]

VAR_OUTPUT

ENO BOOL Output enable

Output REAL Controller Output

TuneStatus BYTE Automatic tuning status as per Table 3

KpOut REAL Proportional gain obtained in tuning

KiOut REAL Full gain achieved in tuning

KdOut REAL Derivative gain obtained in tuning

VAR PID2_INST_0 PID2 Block Structure Access Instance

Table1

Operation

The operation of the PID2 block is divided into two parts: Control and Automatic Tuning.
The Tune variable defines which mode of operation. Whenever Tune = 0, the system operates in control mode,
with values of the user defined gains, in the same way as the PID block.
The control part is exactly the same as the PID block, see the PID Help.

When Tune receives a value other than 0, the automatic tuning process starts. Some rules need to be obeyed
so that tuning can occur. They will be displayed in the sequence.

The Auto-Tuning

For the Automatic Tuning, the Relay Method is used, which is based on obtaining the critical gain and

critical period , which can be used to obtain PID controller gains through several tuning rules: Ziegler-

Nichols, Ciancone-Marlin, Tyreus- Luyben, ITAE, among others.

During the tuning process, the control is switched off and a "relay" determines the output of the controller

(Output), as shown below.

At start, the relay (Output) goes to the value and after a period the output (Feedback) starts to

increase. When the output becomes higher than the value of the setpoint + hysteresis, the relay switches to

, and so on, as shown below.

Equipments (Devices)

WPS v2.5X | 846

Since the value of the manipulated variable (Output) stabilized at the point of operation, we have:

In the case of image above,

From the obtained subtraction curve, the necessary parameters are obtained to obtain the controller.

Criteria for tuning to be performed

In order for automatic tuning to be performed properly, two criteria must be obeyed:

1) place the system at the operating point to be calibrated (the difference must be less than 20%);

2) variable , which is the manipulated variable, may not be showing oscillation greater than 20%;

OBS: you can use the Manual mode of the block to reach the operating point without large oscillations (via the

variable).

Step by step to perform tuning (portuguese only)

1) must start with the value zero;

2) Set a value for . An initial value of 10% of the manipulated variable value is recommended ()

Equipments (Devices)

WPS v2.5X | 847

which reached the system setpoint;

Ex: Assuming that to stabilize at the point of operation = 12.3. In this case, use

3) Set an initial value for . This value should be slightly larger than the noise present in the system.

An initial value of 2% of the Setpoint value can be used if no noise is known;

Ex: for = 60.0, use

4) Set a value in milliseconds () to . This value depends on the system being applied to the

block. Slower systems will require a longer time. It should be sufficient for at least 10 cycles of the relay to be

complete, although with 5 cycles the system generally already stabilizes;

5) Place the system in the operating point. If a pre-control has already been done, it can be applied. Another

option is to use the manual mode and vary input until the system stabilizes at the point of

operation, that is, as close as possible to ;

6) Enable tuning by choosing the type of control (PI or PID and the rule used) through the variable , as

shown in Table 2;

7) The output will inform you the status of the automatic tuning process, as shown in Table 9. At

the end of the process, the output value will be received if the calibration is performed

successfully and the outputs , and will be updated with the values obtained in the tuning

process.

Tune Controller

0 Disabled

1 Automatic PID Controller

2 Automatic PI Controller

3 Tyreus-Luyben PID Controller

4 Tyreus-Luyben PI Controller

5 PID ITAE Controller

6 PI ITAE Controller

7 Ciancone-Marlin PID Controller

8 Ciancone-Marlin PI Controller

9 Ziegler-Nichols PID Controller

10 Ziegler-Nichols PI Controller

Table 2

Tune Status Meaning

0 Disabled

Equipments (Devices)

WPS v2.5X | 848

1 High level relay

2 Low level relay

4 Stabilized system

5 Stable and Relay at high level

6 Stable and Relay at low level

8 Tuning completed

16 Reserved

32 Timeout

64 Method nonexistent

128 Busy: another block in tune

Table 3

The Tyreus-Luyben methods are recommended for systems with the dominant time constant in relation to the

transport delay. Ciancone-Marlin methods are recommended for systems with a long transport delay. The

minimum ITAE method is for intermediary situations.

It is recommended for initial tuning or for users without some practice with the method of the relays, the use of

automatic 1 or 2 for , leaving the system to choose the most appropriate way.

After tuning, the method can be changed causing a new controller to be calculated without re-tuning, since the

required data is stored internally. This allows other methods to be easily experienced.

For a new tuning to be made, need to receive the value zero.

Block Flowchart
N/A

Example

Equipments (Devices)

WPS v2.5X | 849

Equipments (Devices)

WPS v2.5X | 850

11.8.5.6 Conversion

11.8.5.6.1 BCD

11.8.5.6.1.1 BCD_TO_WORD

Block that performs the conversion of a BCD code into a WORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in BCD

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as BCD and converts it to
WORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 851

Example

The above example converts the VALUE variable, in BCD, into a WORD value storing the final result
in RESULT. The block ends with success and ENO output is activated.

11.8.5.6.1.2 WORD_TO_BCD

Block that performs the conversion of a WORD value into a BCD code.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 852

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in BCD

Operation

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it into
BCD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 853

The examples above perform the conversion of VALUE variable, in WORD, into a BCD value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.8.5.6.2 BOOL

11.8.5.6.2.1 BYTE_TO_BOOL

Block that performs the conversion of a BYTE value into a BOOL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BYTE USINT SINT Value in BYTE

VAR_OUTPUT
ENO BOOL End of operation

Result BOOL Value in BOOL

Operation

When this block has a TRUE value in EN, it interprets the Value value as BYTE and converts it into
BOOL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 854

Example

The examples above perform the conversion of VALUE variable, in BYTE, into a BOOL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.8.5.6.2.2 DWORD_TO_BOOL

Block that performs the conversion of a DWORD value into a BOOL value.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 855

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT
ENO BOOL End of operation

Result BOOL Value in BOOL

Operation

When this block has a TRUE value in EN, it interprets the Value value as DWORD and converts it into
BOOL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 856

The examples above perform the conversion of VALUE variable, in DWORD, into a BOOL value
storing the final result in RESULT. The block ends with success and ENO output is activated.

11.8.5.6.2.3 REAL_TO_BOOL

Block that performs the conversion of a REAL value into a BOOL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value in REAL

VAR_OUTPUT
ENO BOOL End of operation

Result BOOL Value in BOOL

Operation

When this block has a TRUE value in EN, it interprets the Value value as REAL and converts it into
BOOL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Equipments (Devices)

WPS v2.5X | 857

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 858

The examples above perform the conversion of VALUE variable, in REAL, into a BOOL value storing
the final result in RESULT. The block ends with success and ENO output is activated. Notice in the
last example that the values very close to the machine epsilon may result in an interpretation of the
FALSE value.

11.8.5.6.2.4 WORD_TO_BOOL

Block that performs the conversion of a WORD value into a BOOL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT
ENO BOOL End of operation

Result BOOL Value in BOOL

Operation

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it into
BOOL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 859

Example

The examples above perform the conversion of VALUE variable, in WORD, into a BOOL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.8.5.6.3 BYTE

11.8.5.6.3.1 BOOL_TO_BYTE

Block that performs the conversion of a BOOL value into a BYTE value.

Equipments (Devices)

WPS v2.5X | 860

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BOOL Value in BOOL

VAR_OUTPUT
ENO BOOL End of operation

Result BYTE USINT SINT Value in BYTE

Operation

When this block has a TRUE value in EN, it interprets the Value value as BOOL and converts it into
BYTE, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 861

The examples above perform the conversion of variable VALUE, in BOOL, into a BYTE value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.8.5.6.3.2 DWORD_TO_BYTE

Block that performs the conversion of a DWORD value into a BYTE value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT
ENO BOOL End of operation

Result BYTE USINT SINT Value in BYTE

Operation

When this block has a TRUE value in EN, it interprets the Value value as DWORD and converts it into
BYTE, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 862

Example

The examples above perform the conversion of variable VALUE, in DWORD, into a BYTE value storing
the final result in RESULT. The block ends with success and ENO output is activated. Notice that
only the eight least significant bits are taken into account.

11.8.5.6.3.3 DWORD_TO_BYTES

Block that performs the conversion of a 32 bits (DWORD) value into four 8 bits (4 BYTES) value.

Equipments (Devices)

WPS v2.5X | 863

Ladder Representation

Block Structure

Variable Type Name Data type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT

ENO BOOL End of operation

Result1 BYTE USINT SINT Value in BYTE (LSB)

Result2 BYTE USINT SINT Value in BYTE

Result3 BYTE USINT SINT Value in BYTE

Result4 BYTE USINT SINT Value in BYTE (MSB)

Operation

When this block has a TRUE value in EN, it interprets the Value value as DWORD and converts it into
four BYTE values (from Result1 to Result4, where Result 1 is LSB), storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 864

Example

Equipments (Devices)

WPS v2.5X | 865

The examples above perform the conversion of variable VALUE, in DWORD, into four BYTE value
storing the final result in RESULT1, RESULT2, RESULT3 and RESULT4. The block ends with
success and ENO output is activated.

11.8.5.6.3.4 REAL_TO_BYTE

Block that performs the conversion of a REAL value into a BYTE value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value in REAL

VAR_OUTPUT
ENO BOOL End of operation

Result BYTE USINT SINT Value in BYTE

Operation

When this block has a TRUE value in EN, it interprets the Value value as REAL and converts it into
BYTE, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 866

Example

The examples above perform the conversion of variable VALUE, in REAL, into a BYTE value storing

Equipments (Devices)

WPS v2.5X | 867

the final result in RESULT. The block ends with success and ENO output is activated. Notice that the
results are truncated in decimal and only the eight least significant bits are taken into account.

11.8.5.6.3.5 WORD_TO_BYTE

Block that performs the conversion of a WORD value into a BYTE value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT
ENO BOOL End of operation

Result BYTE USINT SINT Value in BYTE

Operation

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it into
BYTE, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 868

Example

The examples above perform the conversion of variable VALUE, in WORD, into a BYTE value storing
the final result in RESULT. The block ends with success and ENO output is activated. Notice that
only the eight least significant bits are taken into account.

11.8.5.6.3.6 WORD_TO_BYTES

Block that performs the conversion of a 16 bits (WORD) value in two 8 bits (2 BYTES) value.

Equipments (Devices)

WPS v2.5X | 869

Ladder Representation

Block Structure

Variable Type Name Data type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT

ENO BOOL End of operation

Result1 BYTE USINT SINT Value in BYTE (LSB)

Result2 BYTE USINT SINT Value in BYTE (MSB)

Operation

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it in
two BYTE variables, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 870

Example

The examples above perform the conversion of variable VALUE "VAL_IN", in WORD, in two BYTE
values storing the final result in RESULT1 and RESULT2. The block ends with success and ENO
output is activated.

Equipments (Devices)

WPS v2.5X | 871

11.8.5.6.4 DWORD

11.8.5.6.4.1 BOOL_TO_DWORD

Block that performs the conversion of a BOOL value into a DWORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BOOL Value in BOOL

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as BOOL and converts it into
DWORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 872

The examples above perform the conversion of VALUE variable, in BOOL, into a DWORD value
storing the final result in RESULT. The block ends with success and ENO output is activated.

11.8.5.6.4.2 BYTE_TO_DWORD

Block that performs the conversion of a BYTE value into a DWORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BYTE USINT SINT Value in BYTE

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as BYTE and converts it into
DWORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 873

Example

The examples above perform the conversion of variable VALUE, in BYTE, into a DWORD value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.8.5.6.4.3 BYTES_TO_DWORD

Block that performs the conversion of four 8 bits (BYTE) values into a 32 bits (DWORD) value.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 874

Block Structure

Variable Type Name Data type Description

VAR_INPUT

EN BOOL Block enabling

Value1 BYTE USINT SINT Value in BYTE (1st byte - LSB)

Value2 BYTE USINT SINT Value in BYTE

Value3 BYTE USINT SINT Value in BYTE

Value4 BYTE USINT SINT Value in BYTE (4th byte - MSB)

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Operation

When this block has a TRUE value in EN, it interprets the Value1, Value2, Value3 and Value4 values
as BYTE and converts it into a DWORD variable, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 875

Example

The examples above perform the conversion of four variables VALUE1..4, in BYTE, into a DWORD
value storing the final result in RESULT. The block ends with success and ENO output is activated.

11.8.5.6.4.4 REAL_TO_DWORD

Block that performs the conversion of a REAL value into a DWORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value in REAL

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Equipments (Devices)

WPS v2.5X | 876

Operation

When this block has a TRUE value in EN, it interprets the Value value as REAL and converts it into
DWORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 877

The examples above perform the conversion of variable VALUE, in REAL, into a DWORD value storing
the final result in RESULT. The block ends with success and ENO output is activated. Note that the
results are truncated in decimal and only the thirty-two least significant bits are taken into account.

11.8.5.6.4.5 STRING_TO_DWORD

Block that performs the conversion of a STRING value into a DWORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

STR STRING Value in STRING

VAR_OUTPUT
DONE BOOL End of operation

OUT DWORD UDINT DINT Value in DWORD

Operation

When this block has a TRUE value in EN, it reads the value of STR as STRING character by
character, performing the conversion to REAL and storing in OUT. If the first character is not
mathematically valid, the OUT output receives zero. If there are valid characters, these characters will
be converted to the end of STRING, or until it finds an invalid character.

NOTE!
If the number represented in the string is higher than the maximum supported by a DWORD, the
Result value saturates in this maximum value.

When EN has FALSE value, OUT remains unchanged and DONE remains FALSE.

The DONE value forwards to the next Ladder block the EN value after the operation is completed.

Compatibility

Device Version

PLC300 2.10 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 878

Example

The following examples show various conversions of STRING into values of DWORD type. All
conversions enable the DONE output to the end of the operation.

The conversion above was successfully completed.

The conversion above was successfully completed. The underscore is a valid mathematical character.

The conversion above was successfully completed. The decimal point is not mathematically valid for

Equipments (Devices)

WPS v2.5X | 879

decimals and ends the conversion, truncating the result to what had already been converted.

The conversion above was not successfully completed. The first character was not identified as
mathematically valid, and the output was zeroed.

11.8.5.6.4.6 WORD_TO_DWORD

Block that performs the conversion of a WORD value into a DWORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it into
DWORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 880

Example

The examples above convert the VALUE variable, in WORD, into a DWORD value storing the final
result in RESULT. The block ends with success and ENO output is activated.

11.8.5.6.4.7 WORDS_TO_DWORD

Block that performs the conversion of two 16 bits (WORD) values into a 32 bits (DWORD) value.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 881

Variable Type Name Data type Description

VAR_INPUT

EN BOOL Block enabling

Value1 WORD UINT INT 1st WORD (Less Signif icant Word)

Value2 WORD UINT INT 2nd WORD (More Signif icant Word)

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Operation

When this block has a TRUE value in EN, it interprets the Value1 and Value2 values as WORD and
converts it into a DWORD variable, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 882

The examples above perform the conversion of two variable VALUE1 and VALUE2, in WORD, into a
DWORD value storing the final result in RESULT. The block ends with success and ENO output is
activated.

11.8.5.6.5 Rad-Deg

11.8.5.6.5.1 DEG_TO_RAD

Block that performs the conversion of a value in degrees into a value in radians.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value in degrees

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in radians

Operation

When this block has a TRUE value in EN, it interprets the Value value as in degrees and converts it
into radians, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 883

Example

The examples above perform the conversion of variable VALUE, in degrees, into a corresponding value
in radians storing the final result in RESULT. The block ends with success and ENO output is
activated.

11.8.5.6.5.2 RAD_TO_DEG

Block that performs the conversion of a value in radians into a value in degrees.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 884

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value in radianos

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in graus

Operation

When this block has a TRUE value in EN, it interprets the Value value as in radians and converts it
into degrees, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 885

The examples above perform the conversion of variable VALUE, in radians, into a corresponding value
in degrees storing the final result in RESULT. The block ends with success and ENO output is
activated.

11.8.5.6.6 REAL

11.8.5.6.6.1 BOOL_TO_REAL

Block that performs the conversion of a BOOL value into a REAL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BOOL Value in BOOL

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in REAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as BOOL and converts it into
REAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 886

Example

The examples above perform the conversion of variable VALUE, in BOOL, into a REAL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.8.5.6.6.2 BYTE_TO_REAL

Block that performs the conversion of a BYTE value into a REAL value.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 887

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BYTE USINT SINT Value in BYTE

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in REAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as BYTE and converts it into
REAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 888

The examples above perform the conversion of variable VALUE, in BYTE, into a REAL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.8.5.6.6.3 DWORD_TO_REAL

Block that performs the conversion of a DWORD value into a REAL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in REAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as DWORD and converts it into
REAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 889

Example

The examples above perform the conversion of variable VALUE, in DWORD, into a REAL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.8.5.6.6.4 STRING_TO_REAL

Block that performs the conversion of a STRING value into a REAL value.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 890

Tipo Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

STR STRING Value in STRING

VAR_OUTPUT
DONE BOOL End of operation

OUT REAL Value in REAL

Operation

When this block has a TRUE value in EN, it reads the value of STR as STRING character by
character, performing the conversion to REAL and storing in DONE. If the first character is not
mathematically valid, the OUT output receives zero. If there are valid characters, these characters will
be converted to the end of STRING, or until it finds an invalid character.

NOTE!
The block interprets the dot (.) as a decimal tab, and not the comma (,).

When EN has FALSE value, OUT remains unchanged and DONE remains FALSE.

The DONE value forwards to the next Ladder block the EN value after the operation is completed.

Compatibility

Device Version

PLC300 2.10 or higher

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 891

The following examples show various conversions of STRING into values of REAL type. All
conversions enable the DONE output to the end of the operation.

The conversion above was successfully completed. The decimal point is a valid mathematical
character.

The conversion above was successfully completed. The dash and decimal point are valid
mathematical characters.

The conversion above was successfully completed. The dash and the power indicator of 10 "and" are
valid mathematical characters.

The conversion above was not successfully completed. The first character was not identified as
mathematically valid, and the output was zeroed.

The conversion above was successfully completed. The "p" character is not mathematically valid and
ends the conversion, truncating the result to what had already been converted.

Equipments (Devices)

WPS v2.5X | 892

11.8.5.6.6.5 WORD_TO_REAL

Block that performs the conversion of a WORD value into a REAL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in REAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it into
REAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 893

Example

The examples above perform the conversion of variable VALUE, in WORD, into a REAL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.8.5.6.7 STRING

11.8.5.6.7.1 DWORD_TO_STRING

Block that performs the conversion of a DWORD value into a STRING value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

IN DWORD UDINT DINT Value in DWORD

VAR_OUTPUT
DONE BOOL End of operation

OUT STRING Value in STRING

Operation

When this block has a TRUE value in EN, it interprets the IN value as DWORD and converts it into
STRING, storing in Result.

NOTE!
If the number represented has more digits than the capacity of the STRING, the value will be
truncated.

When EN has FALSE value, OUT remains unchanged and DONE remains FALSE.

Compatibility

Equipments (Devices)

WPS v2.5X | 894

Device Version

PLC300 2.10 or higher

Block Flowchart

Example

The following examples show various conversions of DWORD type values into STRING. All
conversions enable the DONE output to the end of the operation.

The conversion above was successfully completed.

The conversion above was successfully completed.

Equipments (Devices)

WPS v2.5X | 895

The above conversion was successful, but the size of the result of the conversion is greater than the
OUT size, and this has been truncated.

The above conversion was successful, but the size of the result of the conversion is greater than the
OUT size, and this has been truncated.

11.8.5.6.7.2 REAL_TO_STRING

Block that performs the conversion of a REAL value into a STRING value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

IN REAL Value in REAL

VAR_OUTPUT
DONE BOOL End of operation

OUT STRING Value in STRING

Operation

When this block has a TRUE value in EN, it interprets the IN value as REAL and converts it into
STRING, storing in OUT and sending TRUE to the DONE output.

NOTE!
If the number represented has more digits than the capacity of the STRING, the value will be
truncated.

When EN has FALSE value, OUT remains unchanged and DONE remains FALSE.

Compatibility

Equipments (Devices)

WPS v2.5X | 896

Device Version

PLC300 2.10 or higher

Block Flowchart

Example

The following examples show various conversions of REAL type values into STRING. All conversions
enable the DONE output to the end of the operation.

The conversion above was successfully completed.

The conversion above was successfully completed.

Equipments (Devices)

WPS v2.5X | 897

The above conversion was successful, but the size of the result of the conversion is greater than the
OUT size, and this has been truncated.

11.8.5.6.8 WORD

11.8.5.6.8.1 BOOL_TO_WORD

Block that performs the conversion of a BOOL value into a WORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BOOL Value in BOOL

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as BOOL and converts it into
WORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 898

Example

The examples above perform the conversion of VALUE variable, in BOOL, into a WORD value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.8.5.6.8.2 BYTE_TO_WORD

Block that performs the conversion of a BYTE value into a WORD value.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 899

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BYTE USINT SINT Value in BYTE

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as BYTE and converts it into
WORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 900

The examples above perform the conversion of variable VALUE, in BYTE, into a WORD value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.8.5.6.8.3 BYTES_TO_WORD

Block that performs the conversion of two 8 bits (BYTE) values into a 16 bits (WORD) value.

Ladder Representation

Block Structure

Variable Type Name Data type Description

VAR_INPUT

EN BOOL Block enabling

Value1 BYTE USINT SINT 1st BYTE (LSB)

Value2 BYTE USINT SINT 2nd BYTE (MSB)

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value1 and Value2 values as BYTE and
converts it into a WORD variable, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 901

Example

The examples above perform the conversion of two variable VALUE1 and VALUE2, in BYTE, into a
WORD value storing the final result in RESULT. The block ends with success and ENO output is
activated.

11.8.5.6.8.4 DWORD_TO_WORD

Block that performs the conversion of a DWORD value into a WORD value.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 902

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as DWORD and converts it into
WORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 903

The examples above convert the VALUE variable, in DWORD, into a WORD value storing the final
result in RESULT. The block ends with success and ENO output is activated. Notice that only the
sixteen least significant bits are taken into account.

11.8.5.6.8.5 DWORD_TO_WORDS

Block that performs the conversion of a 32 bits (DWORD) value in two 16 bits (2 WORD) value.

Ladder Representation

Block Structure

Variable Type Name Data type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT

ENO BOOL End of operation

Result1 WORD UINT INT Value in WORD (Less Signif icant Word)

Result2 WORD UINT INT Value in WORD (More Signif icant Word)

Operation

When this block has a TRUE value in EN, it interprets the value as DWORD and converts it in two
WORD variables (Result1 and Result2), storing in Result.

When EN has FALSE value, Result remains unchanged.

Equipments (Devices)

WPS v2.5X | 904

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 905

The examples above perform the conversion of a variable VALUE, in DWORD, in two WORD values
storing the final result in RESULT1 and RESULT2. The block ends with success and ENO output is
activated.

11.8.5.6.8.6 REAL_TO_WORD

Block that performs the conversion of a REAL value into a WORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value in REAL

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as REAL and converts it into
WORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 906

Example

The examples above convert the VALUE variable, in DWORD, into a WORD value storing the final
result in RESULT. The block ends with success and ENO output is activated. Note that the results
are truncated in decimal and only the sixteen least significant bits are taken into account.

Equipments (Devices)

WPS v2.5X | 907

11.8.5.7 Counter

11.8.5.7.1 CTD

Countdown block of input pulses.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

CD BOOL Pulse identif ier

LD BOOL Loads the value of PV in CV

PV WORD UINT Value of initial configuration

VAR_OUTPUT
Q BOOL Counter zeroed f lag

CV WORD UINT Current count value

VAR CTD_INST_0 CTD Instance of access to block structure

Operation

When this block identifies a leading edge in CD, it decrements the CV variable until it is zero. While
CV equals zero, the output Q remains at TRUE level. By detecting high-level LD, the block loads the
PV value in CV.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 908

Operation Diagram

Equipments (Devices)

WPS v2.5X | 909

Example

The above example shows the initial conditions of routine. As CV has a value of zero, the Q output is
enabled.

The value of the PV variable was changed to 20, but not yet loaded.

Equipments (Devices)

WPS v2.5X | 910

By identifying TRUE level in LD, the block loads the PV value to CV. Since this value is greater than
zero, the Q output is disabled.

At each leading edge identified in CD, the value of COUNT is decremented until it reaches zero, when
the Q output is enabled.

11.8.5.7.2 CTU

Block for gradual count of input pulses.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

CU BOOL Pulse identif ier

R BOOL Loads the zero value in CV

PV WORD UINT Maximum count value

VAR_OUTPUT
Q BOOL Counter overrun f lag

CV WORD UINT Current count value

VAR CTU_INST_0 CTU Instance of access to block structure

Operation

When this block identifies a leading edge in CD, it increments the CV variable until it is equal to PV.
While CV equals PV, the output Q remains at TRUE level. By detecting high-level R, the block loads
the zero value in CV.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 911

Operation Diagram

Equipments (Devices)

WPS v2.5X | 912

Example

The above example shows the initial conditions of routine. Since CV has a lower value than of PV, the
Q output is disabled.

At each leading edge identified in CU, the value of CV is incremented until it reaches the PV value,
when the Q output is enabled.

Equipments (Devices)

WPS v2.5X | 913

By identifying TRUE level in R, the block loads the zero value to CV. Since this value is lower than of
PV, the Q output is disabled.

11.8.5.7.3 CTUD

Block for gradual count and countdown of input pulses.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

CU BOOL Pulse identif ier for incremental

CD BOOL Pulse identif ier for decremental

R BOOL Loads the zero value in CV

LD BOOL Loads the value of PV in CV

PV WORD UINT Reference value

VAR_OUTPUT

ENO BOOL Output enabling

QU BOOL Counter overrun f lag

QD BOOL Counter zeroed f lag

CV WORD UINT Current count value

VAR CTUD_INST_0 CTUD Instance of access to block structure

Operation

When this block has a TRUE value in EN, it acts as a CTD block and block CTU at the same time
acting on the same CV counter. That is: increments CV until it reaches PV to the leading edges in
CU and decrements CV until it reaches zero to the leading edges in CD. A positive transition in R
carries zero in CV, while a leading edge in LD loads the PV value in CV. If CV has zero value, QD
receives TRUE, and if CV has value equal to PV, QU receives TRUE.

Equipments (Devices)

WPS v2.5X | 914

The ENO value forwards to the next Ladder block the EN value.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 915

Equipments (Devices)

WPS v2.5X | 916

Operation Diagram

Example

Equipments (Devices)

WPS v2.5X | 917

The example above shows the disabled block, with all its internal variables zeroed. Although the
external controls are activated, these values are not forwarded to the instance of the block.

When activated, the block identifies the value of PRESET, loading it in PV, and identifies that the
output is at zero, enabling the QD output. When execution is completed, the ENO output is activated.

At each leading edge identified in CU, the value of CV is incremented until it reaches the PV value,
when the QU output is enabled. When execution is completed, the ENO output is activated.

At each leading edge detected in CD, the CV value is decremented. When CV is a value between
zero and PV, both QD and QU outputs are deactivated. When execution is completed, the ENO
output is activated.

Equipments (Devices)

WPS v2.5X | 918

A TRUE value in R resets CV, while a TRUE value in LD loads the value of PV to CV. As we can see,
R prevails over LD, leaving CV and enabling the QD output. When execution is completed, the ENO
output is activated.

11.8.5.8 Data Transfer

11.8.5.8.1 ARRAYCOPY

Block that copies an array from a certain position to another array or to itself.

Ladder Representation

Block Structure

Variable Type Name Data type Description

VAR_INPUT

EN BOOL Block enabling

VAR_SRC

Array: BYTE USINT

SINT WORD UINT

INT DWORD UDINT

DINT REAL

Input Array

POS_SRC
BYTE USINT WORD

UINT

Position of the input array from w hich the copy w ill be

made

POS_DST
BYTE USINT WORD

UINT

Position of the output array from w hich it w ill be

replaced

LEN
BYTE USINT WORD

UINT
Number of array positions to be copied

VAR_OUTPUT

ENO BOOL End of operation

Result

Array: BYTE USINT

SINT WORD UINT

INT DWORD UDINT

DINT REAL

Output Array

Equipments (Devices)

WPS v2.5X | 919

Operation

This block, when it has a value of TRUE in EN, copies LEN values from the POS_SRC position from
the input array (VAR_SRC) to the position POS_DST into the destination array (Result).

Comments:
- POS_SRC, POS_DST and LEN input variables only accept positive integers. If a negative value is
assigned to any of them, the value zero will be considered.
- The Input Array can be repeated on the output without worrying about data being overwritten.
- If the amount of data to be copied defined by LEN exceeds the last position of the input array, only
valid data will be copied to the last position of the input array, thus avoiding any garbage being
assigned to the output array.
- If the amount of data to be copied defined by LEN exceeds the last position of the output array, only
the data required to complete it will be copied, preventing subsequent memory from receiving
unwanted values.
- The block will not execute if LEN has a value greater than the size of the input array.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

NOTE!

It is important to notice that not only LEN but also POS_SRC will not exceed the
VAR_SRC array's size. The same must be noticed when setting values to POS_DST,
related to the output array Result.

To learn how to create arrays please go to: Ladder > Editor > Variables > Editing in
the Rung

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 920

Equipments (Devices)

WPS v2.5X | 921

In the examples above the value of the variable SRC is copied to DST array, according to source
position (POS_SRC), destination (POS_DST) and the lenght to be copied (LEN). The block ends with
success and ENO output is activated.

11.8.5.8.2 DEMUX

Block that creates 16 new BOOL variables from the decomposition of a WORD variable.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 922

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Word WORD UINT INT Input variable of 15 bits

VAR_OUTPUT
ENO BOOL End of operation

Bit0 – Bit15 BOOL Bit of the corresponding position of Word

Operation

When this block has a TRUE value in EN, it decomposes the input variable in Word 15 Boolean
values stored in Bit0 to Bit15 variables. Bit0 corresponds to the LSB (least significant bit) and Bit15
corresponds to the MSB (most significant bit).

When EN has FALSE value, output variables remain unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 923

Example

The example above decomposes the value of MYWORD in Boolean values, which are stored in the
output variables BIT0 to Bit15. The block ends successfully and the ENO output is activated.

Equipments (Devices)

WPS v2.5X | 924

11.8.5.8.3 DEMUX2

Block that creates 32 new BOOL variables from the decomposition of a DWORD variable.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 925

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

DWord DWORD UDINT DINT Input variable of 15 bits

VAR_OUTPUT ENO BOOL End of operation

Bit0 – Bit31 BOOL Bit of the corresponding position of Word

Operation

When this block has a TRUE value in EN, it decomposes the input variable in DWord 32 Boolean
values stored in Bit0 to Bit31 variables. Bit0 corresponds to the LSB (least significant bit) and Bit15
corresponds to the MSB (most significant bit).

When EN has FALSE value, output variables remain unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 926

The example above decomposes the value of MYDWORD in Boolean values, which are stored in the
output variables BIT0 to Bit31. The block ends successfully and the ENO output is activated

11.8.5.8.4 ILOAD

Block which indirectly loads the value of a variable and transfers it to Value.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 927

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Group# BYTE Group w here the variable is stored

DataType# BYTE Data type of the selected variable

Address DWORD UDINT DINT Address of the global variable, as its group

VAR_OUTPUT

ENO BOOL End of operation

Value
As selected in

DataType#
Value of the selected variable

Operation

When this block has a TRUE value in EN, it loads, in Value, the of the Address variable belonging to
the Group# group, as the selected DataType#.

When EN has FALSE value, Value remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 928

Example

The above example loads the value of the address 40 of group 2 (GLOBAL_SYSTEM%S), which
represents the status of ESC key in UINT format for the VALUE variable. The block ends with
success and ENO output is activated.

11.8.5.8.5 ILOADBOOL

Block that indirectly loads the value of a bit in a global variable address.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Group# BYTE Group w here the variable is stored

Address DWORD UDINT DINT Address of the global variable, as its group

Bit BYTE USINT SINT Position of the bit to be checked

VAR_OUTPUT
ENO BOOL End of operation

Value BOOL Value of the bit selected by the input arguments

Operation

When this block has a TRUE value in EN, it loads, in Value, the Bit contents of the Address variable
belonging to the Group# group.

When EN has FALSE value, Value remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 929

Example

The above example loads the value of bit 1 of the address 24 of group 2 (S GLOBAL_SYSTEM%),
which represents the status of ESC key for the VALUE variable. The block ends with success and
ENO output is activated.

11.8.5.8.6 ISTORE

Block that indirectly loads the Value value in a variable.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 930

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Group# BYTE Group w here the variable is stored

DataType# BYTE Data type of the selected variable

Address DWORD UDINT DINT Address of the global variable, as its group

Value

Depending on the

selection of the

DataType#

Value to be w ritten in the selected variable

VAR_OUTPUT ENO BOOL End of operation

Operation

When this block has a TRUE value in EN, it loads the Value value in the contents of the Address
variable belonging to the Group# group, as the selected DataType#.

When EN has FALSE value, Value remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 931

Example

The example above stores the VALUE value in WORD format in address 444 of group 3
(GLOBAL_SYSTEM% C), which represents the index of the communication port Modbus TCP. The
block ends with success and ENO output is activated.

11.8.5.8.7 ISTOREBOOL

Block that indirectly loads the Value value in a bit in a global variable address.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 932

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Group# BYTE Group w here the variable is stored

Address DWORD UDINT DINT Address of the global variable, as its group

Bit BYTE USINT SINT Position of the bit to be modif ied

Value BOOL New value of the selected bit

VAR_OUTPUT ENO BOOL End of operation

Operation

When this block has a TRUE value in EN, it loads the Value value in the Bit contents of the Address
variable belonging to the Group# group.

When EN has FALSE value, Value remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 933

Example

The example above stores the value of VALUE in bit 7 of the address 121 in group 3
(GLOBAL_SYSTEM% C), which represents the disable command of CANopen communication. The
block ends with success and ENO output is activated.

11.8.5.8.8 MUX

Block that creates a new WORD variable from the concatenation of 16 BOOL variables.

Equipments (Devices)

WPS v2.5X | 934

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Bit0 – Bit15 BOOL Bit of the corresponding position in the new w ord

VAR_OUTPUT
ENO BOOL End of operation

Word WORD UINT INT New w ord formed from the input bits

Operation

When this block has a TRUE value in EN, it concatenates Boolean values of the input variables and
stores this value in the variable Word. Bit0 corresponds to LSB (least significant bit) and Bit15
corresponds to the MSB (most significant bit).

When EN has FALSE value, Word remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 935

Example

The above example concatenates the Boolean values of the input bits of the block to form the output
word stored in MYWORD. The block ends with success and ENO output is activated.

Equipments (Devices)

WPS v2.5X | 936

11.8.5.8.9 MUX2

Block that creates a new DWORD variable from the concatenation of 32 BOOL variables.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 937

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Bit0 – Bit31 BOOL Bit of the corresponding position in the new w ord

VAR_OUTPUT
ENO BOOL End of operation

DWord DWORD UDINT DINT New w ord formed from the input bits

Operation

When this block has a TRUE value in EN, it concatenates Boolean values of the input variables and
stores this value in the variable DWord. Bit0 corresponds to LSB (least significant bit) and Bit31
corresponds to the MSB (most significant bit).

When EN has FALSE value, Word remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 938

The above example concatenates the Boolean values of the input bits of the block to form the output
word stored in MYDWORD. The block ends with success and ENO output is activated.

11.8.5.8.10 ReadRecipe

Block that gets the recipe from a recipe file and sends it to a variable.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 939

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

FILENAME# STRING Name of the recipe f ile

INDEX WORD UINT Recipe index to be read

VAR_OUTPUT

Q BOOL End of operation

ERROR BOOL Error occurrence f lag

ERRORID BYTE USINT Identif ier of the occurred error

DST STRUCT Variable w here the data read w ill be saved

VAR READRECIPE_INST_0 READRECIPE Instance of access to block structure

Operation

When this block identifies a leading edge in Execute, it gets the data from the selected recipe by the
INDEX index in the # FILENAME file and sends them to the DST. If everything goes successfully, Q
receives TRUE and remains so while Execute is TRUE.

NOTE!
Recipes stored in RAM is identified by 'RECIPE_NAME'. Recipes stored on the SD card are
identified by 'RECIPE_NAME.CSV'.

When Execute has FALSE value, DST remains unchanged.

If there is any error in the execution, the Error output is activated and ErrorID displays an error code
according to the table below.

Code Description

1 Incomplete recipe

2 Invalid structure

3 Nonexistent recipe

4 Invalid f ile

5 Invalid f ile or nonexistent SD card

6 SD card blocked for w riting

7 SD card busy (log or other use)

Block Flowchart

Equipments (Devices)

WPS v2.5X | 940

Example

Equipments (Devices)

WPS v2.5X | 941

The above example searches the index 3 of the recipe file stored in RAM 'RECIPE_RAM'. The block
does not find the specified file, enabling the ERROR output with ERRORID with value 5 and disabling
the Q output.

The above example searches the index 3 of the recipe file stored in RAM 'RECIPE_RAM'. The block
finds the specified file, but does not find the index 3, enabling the ERROR output with ERRORID with
value 3 and disabling the Q output.

The above example searches the index 3 of the recipe file stored in RAM 'RECIPE_RAM'. The block
finds the file and the specified index, stores values in DST, disables the ERROR output and enables
Q output.

11.8.5.8.11 SCALE

Block that converts a value from a scale to another one.

Equipments (Devices)

WPS v2.5X | 942

Ladder Representation

Block Structure

Variable Type Name Data type Description

VAR_INPUT

EN BOOL Block enabling

Value
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Input value to be converted

MAX_IN
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Maximum value of input scale

MIN_IN
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Minimum value of input scale

MAX_OUT
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Maximum value of output scale

MIN_OUT
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Minimum value of output scale

VAR_OUTPUT

ENO BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Output value on new scale

Operation

This block, when it has a TRUE value in EN, by setting the minimum and maximum values of the
variable to be converted and the minimum and maximum values of the new scale variable, defined by
the user, performs the Scale function for the conversion of the variable according to equation:

Where:

and

The graph below represents the straight linearized:

Equipments (Devices)

WPS v2.5X | 943

When EN has FALSE value, DST remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

NOTE!
- The value in MAX

in
 must be greater than value in MIN

in
;

- The value in MAX
out

 must be greater than value in MIN
out

;

- Value in Value according to: MINin = Value = MAXin.

Block Flowchart

Example

The example above stores the value of the variable VALUE in Result. The block considers the
equation described above and ends with success and ENO output is activated.

Equipments (Devices)

WPS v2.5X | 944

11.8.5.8.12 SEL

Block that replicates to the output the value of an input variable (Value0 or Value1) according to the
Selector selection.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Selector BOOL Variable that selects the input

Value0
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Multiplexed input number 1

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Multiplexed input number 2

VAR_OUTPUT

ENO BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Output value selected

Operation

When this block has a TRUE value in EN, it replicates to the Result variable the Value0 value if
selector is FALSE or the Value1 value if Selector is TRUE.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 945

Example

The above example uses the SELECTOR variable as multiplexing channel selector. When it is at
FALSE level, the RESULT output gets the value of VALUE0. The block ends successfully and the
ENO output is activated.

Equipments (Devices)

WPS v2.5X | 946

The above example uses the SELECTOR variable as multiplexing channel selector. When it is at
FALSE level, the RESULT output gets the value of VALUE0. The block ends successfully and the
ENO output is activated. Note that the binary pattern has been maintained even though the decimal
representation is corrupted, since DWORD does not accept negative values.

The above example uses the SELECTOR variable as multiplexing channel selector. When it is at
TRUE level, the RESULT output gets the value of VALUE1. The block ends successfully and the ENO
output is activated. Note that the binary pattern has been maintained even though the decimal
representation is corrupted, since DWORD does not accept negative values.

11.8.5.8.13 STORE

Block that performs direct storage of data from a source to a destination.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 947

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

SRC
BYTE USINT SINT WORD UINT

INT DWORD DINT DINT REAL
Data source

VAR_OUTPUT

ENO BOOL End of operation

DST
BYTE USINT SINT WORD UINT

INT DWORD DINT DINT REAL
Data destination

Operation

When this block has a TRUE value in EN, it stores the contents from SRC into DST.

NOTE!
SRC and DST must have data types of the same size.

When EN has FALSE value, DST remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 948

The example above stores the value of the variable SRC in DST. The block ends with success and
ENO output is activated.

The example above stores the value of the variable SRC in DST. The block ends with success and
ENO output is activated. Note that the binary pattern is maintained between variables of different
types.

11.8.5.8.14 SWAP

Block that performs a swap between the odd bytes and consecutive even bytes into Value and sends
the value to Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value
WORD UINT INT

DWORD UDINT DINT
Input variable to be sw apped

VAR_OUTPUT

ENO BOOL End of operation

Result
WORD UINT INT DWORD UDINT

DINT REAL(*)
Output value

Operation

When this block has a TRUE value in EN, it changes the values of the odd bytes (1, 3, 5 and 7) and
the consecutive even bytes (2, 4, 6 and 8, respectively) of the Value variable, storing the result in
Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

NOTA!
Caution when using in Result a variable of REAL type, because the block does not
perform type conversion, that is, it only reverses the bytes in memory.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 949

Example

The example changes the position of byte 1 value of VALUE (0x44) with byte 2 of VALUE (0x3D),
storing the final result (0x44_3D) in RESULT. The block ends with success and ENO output is
activated.

The example changes the position of byte 1 value of VALUE (0x96) with byte 2 of VALUE (0xA8) and
byte 3 of VALUE (0x0D) with byte 4 of VALUE (0x00), storing the final result (0x0D_00_96_A8) in
RESULT. The block ends with success and ENO output is activated.

11.8.5.8.15 SWAP2

Block that rearranges the bytes of a variable.

Equipments (Devices)

WPS v2.5X | 950

Ladder Representation

Block Structure

Variable type Name Data type Description

VAR_INPUT

EN BOOL Block enabling

Value
WORD UINT INT

DWORD UDINT DINT
Input variable to be rearranged

Type BYTE
Variable that defines the conversion type

according to Table 2

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT

REAL(*)

Output value

Table 1. Block variables.

Type WORD UINT INT ENO DWORD UDINT DINT ENO

0 AB->AB* TRUE ABCD->ABCD TRUE

1 AB->BA TRUE ABCD->DCBA TRUE

2 - FALSE ABCD->CDAB TRUE

3 - FALSE ABCD->BADC TRUE

4 ... - FALSE - FALSE

Table 2. Conversion type (*characters A, B, C and D represents BYTES).

Operation

When this block has a TRUE value in EN, it rearranges the bytes from Value variable, storing the
result in Result.
Type defines how the bytes will be rearranged, as shown in Table 2.
Note that for 16-bit variables, only options 0 and 1 are valid.
For 32-bit variables the options 0, 1, 2, and 3 are valid.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.
Invalid TYPE options assigns FALSE to ENO, and Result value is not changed.

NOTA!
Caution when using in Result a variable of REAL type, because the block does not
perform type conversion, that is, it only reverses the bytes in memory.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 951

Example

The example rearranges the position of value VALUE_IN according to the type set in TYPE_IN = 1
(AB->BA), storing the final result in RESULT. The block ends with success and ENO output is
activated.

11.8.5.8.16 WriteRecipe

Block that writes a recipe into a recipe file from a variable.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 952

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

FILENAME# STRING Name of the recipe f ile

INDEX WORD UINT Recipe index to be w ritten

SRC STRUCT Variable w here the data is read

VAR_OUTPUT

Q BOOL End of operation

ERROR BOOL Error occurrence f lag

ERRORID BYTE USINT Identif ier of the occurred error

VAR WRITERECIPE_INST_0 WRITERECIPE Instance of access to block structure

Operation

When this block identifies a leading edge in Execute, it gets the data from SRC file and sends them
to the recipe file selected by the INDEX index in the FILENAME#. If everything goes successfully, Q
receives TRUE and remains so while Execute is TRUE.

NOTE!
Recipes stored in RAM is identified by 'RECIPE_NAME'. Recipes stored on the SD card are
identified by 'RECIPE_NAME.CSV'.

If there is any error in the execution, the Error output is activated and ErrorID displays an error code
according to the table below.

Code Description

1 Incomplete recipe

2 Invalid structure

3 Nonexistent recipe

4 Invalid f ile

5 Invalid f ile or nonexistent SD card

6 SD card blocked for w riting

Block Flowchart

Equipments (Devices)

WPS v2.5X | 953

Example

Equipments (Devices)

WPS v2.5X | 954

The above example attempts to write the contents of SRC in the index 4 of the recipes file stored in
SD card 'RECIPE_SD.CSV'. The block does not find the specified file, enabling the ERROR output
with ERRORID with value 5 and disabling the Q output.

The above example attempts to write the contents of SRC in the index 4 of the recipes file stored in
SD card 'RECIPE_SD.CSV'. The block finds the specified file, but does not find the index 4, enabling
the ERROR output with ERRORID with value 3 and disabling the Q output.

The above example attempts to write the contents of SRC in the index 4 of the recipes file stored in
SD card 'RECIPE_SD.CSV'. The block finds the file and the specified index, stores values in the
recipe, disables the ERROR output and enables Q output.

Equipments (Devices)

WPS v2.5X | 955

11.8.5.9 Filter

11.8.5.9.1 LOWPASS

Block that filters the input using a low pass filter of first order and inserts the result in the output.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Input REAL Input signal

Tau REAL Filter time constant

Ts# UINT Sampling time [ms]

VAR_OUTPUT
ENO BOOL Output enabling

Output REAL Filter output

VAR LOWPASS_INST_0 LOWPASS Instance of access to block structure

Operation

When this block has a TRUE value in EN, filters the input value of Input using a low pass first order
filter described by Tau and Ts#, inserting the result in Output. On the leading edge of EN, Output
receives zero.

When EN has FALSE value, Output remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 956

Example

The above example causes OUTPUT, by identifying a leading edge in EN, to display a behavior of first
order with time constant equal to Tau and the sampling time of 2 ms, in order to achieve the reference
set to INPUT. At each calculation completed successfully, the ENO output is activated.

Equipments (Devices)

WPS v2.5X | 957

11.8.5.10 Hardware

11.8.5.10.1 IMMEDIATE_INPUT

Block that performs an instantaneous reading of the selected input value, without changing the value
of images (GLOBAL_IO variables).

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Source# BYTE Inputs to be read (digital or analog)

VAR_OUTPUT
ENO BOOL Output enabling

Destination WORD INT UINT Variable mapped w ith the values of the inputs selected

Operation

When this block has a TRUE value in EN, it gets the immediate value of the selected input in
Source#. If selected the analog input AI1, its value is passed on to Destination. If the digital input is
selected, its bits are concatenated so that DI1 be the least significant bit and DI10 be the most
significant bit and the result is sent to Destination.

When EN has FALSE value, Destination remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Compatibility

Device Version

PLC300 1.20 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 958

Example

The example above is an immediate reading of the signs of the digital inputs DI1 to DI10 of the
PLC300. This reading is then interpreted as a binary sequence with DI1 being the least significant bit
and the result is sent to the DESTINATION variable. The block ends with success, ENO output is
activated.

Equipments (Devices)

WPS v2.5X | 959

11.8.5.10.2 IMMEDIATE_OUTPUT

Block that performs an instantaneous reading of the selected output port, without changing the value
of images (GLOBAL_IO variables).

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Source WORD INT UINT
Variable mapped w ith the values to be sent to the

selected outputs

VAR_OUTPUT
ENO BOOL Output enabling

Destination# BYTE Outputs to be w ritten (digital or analog)

Operation

When this block has a TRUE value in EN, it writes immediately in the selected output the value of
Source. If selected analog output AO1, the Source value is passed on to it. If the digital outputs are
selected, DO1 will receive the zero bit of Source, DO2 bit one, DO3 bit two, and so on.

When EN has FALSE value, Destination# remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Compatibility

Device Version

PLC300 1.20 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 960

Example

Equipments (Devices)

WPS v2.5X | 961

The above example is for immediate SOURCE written value, interpreted as a binary sequence, the
digital outputs DO1 to DO9 of the PLC300 and DO1 receives the value of the least significant bit. The
block ends with success, ENO output is activated. Note that the immediate writing does not prevail
over direct coil DO1 or over enabling coils in DO2, DO3 and DO4.

11.8.5.10.3 P_RAMP

Block that generates a PWM signal with a certain numer of pulses at the digital output DO9,
respecting a ramp of rise and fall in frequency..

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 962

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Pulses DWORD UDINT Total number of pulses of the block execution

Frequency DWORD UDINT Maximum frequency to be reached

Time DWORD UDINT Ramp time [ms]

Steps BYTE USINT Steps to increase frequency

VAR_OUTPUT DONE BOOL Output enabling

VAR P_RAMP_INST_0 P_RAMP Instance of access to block structure

Operation

When the EN input is TRUE, the block generates a PWM signal at output DO9. Initially, it generates
a rise ramp, ranging from zero frequency to Frquency value (between 0 and 200 KHz), based on the
Time and Steps settings. At the appropriate time, the block generates a descent ramp, with the same
profile as the rise ramp, until the frequency is zero and the Pulses value is reached.

When the Pulses value is reached, the DONE output goes to TRUE.

If the EN input goes to FALSE before reaching the Pulses number, the PWM generation stops
immediately.

Equipments (Devices)

WPS v2.5X | 963

The duty cycle of the signal remains constant at 0.5 throught the block execution.

For wich the frequency ramp is generated, it is necessary thet the number of Steps is less or equal
than to a quarter of the Frequency value, that is:
Steps = (1/4) . Frequency

If this limitation is not respected, the frequency ramp will not be generated. It means that PWM signal
goes directly to the Frequency value.

Example: If the Frequency value is 100 Hz, for the frequency ramp to be generated, the number of
Steps must be less or equal than 25.

NOTE!
Having other PWM blocks running, whichever is called first will have priority.

NOTE!
This block has priority over any coil that is writing data in DO9.

Compatibility

Device Version

PLC300 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 964

Equipments (Devices)

WPS v2.5X | 965

Example

The above example enables a PWM signal in DO9 output with initial frequency 0 Hz and duty cycle of
50%. The rise time of the ramp frequency is 500 ms, and the ramp has 5 frequency steps (0, 50, 100,
150 and 200 Hz). In total executing the block, 1000 pulses will be sent to the output. The block ends
with success, Q output is activated.

11.8.5.10.4 PWM

Block that inserts a PWM signal on digital output DO9.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 966

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Frequency DWORD UDINT Frequency of the PWM

Width WORD Pulse Width

VAR_OUTPUT Q BOOL Output enabling

VAR PWM_INST_0 PWM Instance of access to block structure

Operation

When this block has a TRUE value in EN, it inserts into DO9 a PWM signal with a given frequency in
Frequency (between 0 and 300 kHz) and pulse width determined by Width (between 0 and 1000,
where 1000 would be 100% active cycle).

NOTE!
This block has priority over any coil that is writing data in DO9.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 967

The above example enables a PWM signal in DO9 output with frequency 500 Hz and duty cycle of
20%. The block ends with success, Q output is activated.

11.8.5.10.5 READENC

Block that continuously reads the pulse value of an encoder according to a type of reading chosen.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Source# BYTE Counting source

VAR_OUTPUT
ENO BOOL Output enabling

Value DINT DWORD UDINT Counting value

VAR READENC_INST_0 READENC Instance of access to block structure

Operation

When this block has a TRUE value in EN, it gets the number of pulses counted in the encoder, as
selected in Source #, and transfers them to Value. At each leading edge, Value is reset to zero.

When EN has FALSE value, Value remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 968

Example

The above example, when identifying a leading edge on DI1, starts counting the number of pulses in
the encoder connected in quadrature conformation AB, storing the value in VALUE. The block ends
with success, ENO output is activated.

11.8.5.10.6 READENC2

Block that reads the pulse value of an encoder according to a type of reading chosen, interpreting it
as a fraction of revolutions.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 969

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Source# BYTE Counting source

Pulses DWORD UDINT Maximum number of pulses in a turn

VAR_OUTPUT
ENO BOOL Output enabling

Value DINT DWORD UDINT Counting value

VAR READENC2_INST_0 READENC2 Instance of access to block structure

Operation

When this block has a TRUE value in EN, it gets the number of pulses counted in the encoder, as
selected in Source #, and transfers them to Value. At each leading edge, Value is reset to zero.
When Value increases and reaches the value of Pulses, Value receives zero. When Value
decrements and tends to reach a value of -1, Value receives the value in Pulses. This way, Value
always displays the result in fraction of revolutions.

When EN has FALSE value, Value remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 970

Example

The above example, when identifying a leading edge on DI1, starts counting the number of pulses in
the encoder connected in quadrature conformation AB. PULSES_IN_TURN is the value of pulses to
complete a turn. If the value read is higher, the counting restarts from zero. If the value read is

Equipments (Devices)

WPS v2.5X | 971

negative, counting restarts from PULSES_IN_TURN. The resulting value is stored in VALUE. The
block ends with success, ENO output is activated.

11.8.5.10.7 READENC3

Block that reads the value of pulses from an encoder according to a chosen type of reading,
calculating differentials between calls to the block.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Source# BYTE Counting source

VAR_OUTPUT

ENO BOOL Output enabling

Value DINT DWORD UDINT Counting value

Delta DINT DWORD UDINT
Difference betw een the previous counting and current

counting

Operation

When this block has a TRUE value in EN, it gets the number of pulses counted in the encoder since
energizing of the PLC300, as selected in Source#, and transfers them to Value. The value of Delta is
the difference between the pulses counted in this run and the previous run.

When EN has FALSE value, Value and Delta remain unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 972

Example

The example above when identifying a leading edge on DI1, gets the number of pulses on input A
since the energizing of the equipment, storing the value in VALUE. The difference between the current
value and the value previously read is stored in DIFFERENCE. The block ends with success, ENO
output is activated.

11.8.5.10.8 READENC4

Block that reads the value of pulses from an encoder according to a chosen type of reading,
displaying to the user his current position in revolutions and the speed in RPM.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 973

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

SOURCE# BYTE Counting source

PPR WORD Number of pulses corresponding to a turn

FILTER REAL Time constant of the input f ilter

VAR_OUTPUT

ENO BOOL Output enabling

SPEED REAL Speed in RPM

POSITION REAL Current position of the encoder, in revolutions

VAR READENC4_INST_0 READENC4 Instance of access to block structure

Operation

When this block has a TRUE value in EN, it gets the number of encoder pulses counted since
energization of the PLC300 as selected on SOURCE #, and calculates the number of absolute
revolutions through the PPR argument, inserting the result in POSITION. The value of SPEED is
calculated by means of an internal time base of the block. Further, the block allows filtering of the
signal with an output filter determined by FILTER.

When EN has FALSE value, POSITION and SPEED remain unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Compatibility

Device Version

PLC300 2.10 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 974

Example

The example above when identifying a leading edge on DI1, gets the number of pulses of the encoder
connected in quadrature conformation in the fast inputs since energization equipment.
PULSES_IN_TURN is the value of pulses to complete a turn. TURNS stores the value of the pulses
interpreted as revolutions, according PULSES_IN_TURN, and SPEED stores the current speed of the
encoder. The block ends with success, ENO output is activated.

11.8.5.11 Logic

11.8.5.11.1 Logic Bit

11.8.5.11.1.1 RESETBIT

Logical block used to perform reset of a specific bit in a field.

Equipments (Devices)

WPS v2.5X | 975

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_IN_OUT Data

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable w hose bit w ill be changed

VAR_INPUT
EN BOOL Block enabling

Position BYTE USINT Position of the bit that w ill be changed

VAR_OUTPUT DONE BOOL Operation successful

Operation

This block when it has a TRUE value in EN, resets the bit indicated in Position in the Data variable
that is forwarded to the output already with its updated value.

When EN has FALSE value, Data remains unchanged.

The DONE variable receives the same EN value, except when there is an error in the reset of the bit,
then getting a FALSE value.

NOTE!
It is important to notice that Position is within the range of values of bits corresponding to variable
type in Data. For example: if Data is a BYTE, it has 8 bits, and Position must contain a value
between 0 and 7.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 976

Example

The example above resets the bit of AUX zero position, whose initial value is 200 (1100 1000, in
binary). Since this bit already had FALSE value, nothing has changed.

The example above resets the bit in position three of AUX by changing its binary value and, therefore,
its decimal representation.

The example above resets the bit in position nine of AUX. Since AUX is a variable BYTE type, it has

Equipments (Devices)

WPS v2.5X | 977

only eight bits. Thus, the example above creates a runtime error in the block and therefore the output
is not enabled.

11.8.5.11.1.2 SETBIT

Logical block used to perform the set of a specific bit in a field.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_IN_OUT Data

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable w hose bit w ill be changed

VAR_INPUT
EN BOOL Block enabling

Position BYTE USINT Position of the bit that w ill be changed

VAR_OUTPUT DONE BOOL Operation successful

Operation

This block when it has a TRUE value in EN, sets the bit indicated in Position in the Data variable that
is forwarded to the output already with its updated value.

When EN has FALSE value, Data remains unchanged.

The DONE variable receives the same EN value, except when there is an error in the set of the bit,
then getting a FALSE value.

NOTE!
It is important to notice that Position is within the range of values of bits corresponding to variable
type in Data. For example: if Data is a BYTE, it has 8 bits, and Position must contain a value
between 0 and 7.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 978

Example

The example above sets the bit of AUX zero position, whose initial value is 153 (1001 1001, in binary).
Since this bit already had TRUE value, nothing has changed.

The example above sets the bit in position three of AUX by changing its binary value and, therefore,
its decimal representation.

The example above sets the bit in position fifteen of AUX. Since AUX is a variable BYTE type, it has

Equipments (Devices)

WPS v2.5X | 979

only eight bits. Thus, the example above creates a runtime error in the block and therefore the output
is not enabled.

11.8.5.11.1.3 TESTBIT

Logical block that revolutions the value of a specific bit in a field.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

Data

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable w hose bit w ill be tested

EN BOOL Block enabling

Position BYTE USINT Position of the bit that w ill be changed

VAR_OUTPUT Q BOOL Value of the tested bit

Operation

This block when it has a TRUE value in EN, sends to the output Q the bit value indicated in Position
in the Data variable.

When EN has FALSE value, Q also receives FALSE.

NOTE!
It is important to notice that Position is within the range of values of bits corresponding to variable
type in Data. For example: if Data is a BYTE, it has 8 bits, and Position must contain a value
between 0 and 7.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 980

Example

The example above sets the bit value of zero position of AUX, whose initial value is 74 (0100 1010 in
binary) to the output Q. Since this bit has value 0, the output is disabled.

The example above sets the value of the bit of position three of AUX to the output Q. Since this bit
has value 1, the output is enabled.

The example above sets the bit value of position ten of AUX to output Q. Since AUX is a variable of
BYTE type, it has only eight bits. Thus, the example above creates a runtime error in the block and
therefore the output is disabled.

Equipments (Devices)

WPS v2.5X | 981

11.8.5.11.2 Logic Boolean

11.8.5.11.2.1 AND

Logical block that performs an boolean "and" operation between two variables, storing the result in a
third one.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

Value2

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the “and” Boolean operation of
input variables Value1 and Value2.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 982

Example

The example above performs an "and" Boolean operation between AUX and AUX2, storing the result in
AUX3.

11.8.5.11.2.2 NOT

Block that performs a logical operation of boolean "not" in a variable, storing the result in another.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 983

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Reference variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the denied Boolean value of
the Value input variable.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

The example above performs a boolean "not" operation in AUX, storing the result in AUX2.

Equipments (Devices)

WPS v2.5X | 984

11.8.5.11.2.3 OR

Logical block that performs an Boolean "or" operation between two variables, storing the result in a
third one.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

Value2

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the “or” Boolean operation of
input variables Value1 and Value2.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 985

Example

The example above performs an "or" Boolean operation between AUX and AUX2, storing the result in
AUX3.

11.8.5.11.2.4 XNOR

Logical block that performs an Boolean "not exclusive or" operation between two variables, storing the
result in a third one.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 986

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

Value2

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the “denied exclusive or”
Boolean operation of input variables Value1 and Value2.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 987

The example above performs a "denied exclusive or" Boolean operation between AUX and AUX2,
storing the result in AUX3.

11.8.5.11.2.5 XOR

Logical block that performs an Boolean "exclusive or" operation between two variables, storing the
result in a third one.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

Value2

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the “xor” Boolean operation of
input variables Value1 and Value2.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 988

Example

The example above performs a "xor" Boolean operation between AUX and AUX2, storing the result in
AUX3.

11.8.5.11.3 Logic Rotate

11.8.5.11.3.1 ROL

Block that performs a logical left rotation operation in a value passed by Value, storing the result in
Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 989

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable to undergo rotation

Shift BYTE USINT Shift index

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of logical left shifts, according to the Shift value. The most significant bits
that are being discarded are returned to the least significant bits, characterizing the rotation.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 990

Example

The above example performs a logical left shift by one position in the VALUE variable whose initial
value is -100 (1001 1100 in binary). The discarded bits on the left are reinserted on the right. The final
result (0011 1001 in binary) is stored in RESULT.

The above example performs a logical left rotation by five positions in the VALUE variable whose initial
value is 21 (0001 0101 in binary). The discarded bits on the left are reinserted on the right. The final
result (1010 0010 in binary) is stored in RESULT.

11.8.5.11.3.2 ROR

Block that performs a logical right rotation operation in a value passed by Value, storing the result in
Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 991

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable to undergo rotation

Shift BYTE USINT Shift index

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of logical right shifts, according to the Shift value. The least significant bits
that are being discarded are returned to the most significant bits, characterizing the rotation.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 992

Example

The above example performs a logic right shift by one position in the VALUE variable whose initial
value is -128 (1000 0000 in binary). The discarded bits on the right are reinserted on the left. The final
result (0100 0000 in binary) is stored in RESULT. Notice that the sign is not preserved in this
operation.

The above example performs a logical right rotation by one position in the VALUE variable whose
initial value is -127 (1000 0001 in binary). The discarded bits on the right are reinserted on the left. The
final result (1100 0000 in binary) is stored in RESULT.

11.8.5.11.4 Logic Shift

11.8.5.11.4.1 ASHL

Block that performs a binary left shift operation in a value passed by Value, storing the result in
Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 993

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value SINT INT DINT Variable to undergo shift

Shift BYTE USINT Shift index

VAR_OUTPUT
ENO BOOL End of operation

Result SINT INT DINT Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of arithmetic left shifts, according to the Shift value.

NOTE!
All arithmetic shifts implemented maintain the sign of the variable.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 994

Description of exemple.

Description of exemple.

11.8.5.11.4.2 ASHR

Block that performs arithmetic left shift operation in a value passed by Value, storing the result in
Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value SINT INT DINT Variable to undergo shift

Shift BYTE USINT Shift index

VAR_OUTPUT
ENO BOOL End of operation

Result SINT INT DINT Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of arithmetic right shifts, according to the Shift value.

Equipments (Devices)

WPS v2.5X | 995

NOTE!
All arithmetic shifts implemented maintain the sign of the variable.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

The above example performs an arithmetic right shift by three positions in the VALUE variable whose
initial value is 52 (0011 0100 in binary). The bits on the right are being discarded, and on the left new
zeros are inserted. The final result (0000 0110 in binary) is stored in RESULT.

Equipments (Devices)

WPS v2.5X | 996

The above example performs an arithmetic right shift by two positions in the VALUE variable whose
initial value is -79 (1011 0001 in binary). The bits on the right will be discarded and new ones on the
left are inserted, since the arithmetic right shifts preserve the sign of the variable. The final result
(1111 0110 in binary) is stored in RESULT.

The above example performs an arithmetic right shift by thirteen positions in the VALUE variable
whose initial value is -128 (1000 0000 in binary). The bits on the right are being discarded, and on the
left new ones are inserted. The final result (1111 1111 in binary) is stored in RESULT.

11.8.5.11.4.3 SHL

Block that performs a binary logical left shift operation in a value passed by Value, storing the result
in Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 997

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable to undergo shift

Shift BYTE USINT Shift index

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of logical shifts left, according to the Shift value.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 998

The above example performs a logical right shift by four positions in the VALUE variable whose initial
value is 56 (0011 1000 in binary). The bits on the left are being discarded, and on the left new zeros
are inserted. The final result (0011 1000 0000 in binary) is stored in RESULT.

The above example performs a logical right shift by four positions in the VALUE variable whose initial
value is -56 (1100 1000 in binary). The bits on the left are being discarded, and on the left new zeros
are inserted. The final result (1100 1000 0000 in binary) is stored in RESULT. Since RESULT is SINT
type, it only accepts the first eight bits (1000 0000).

11.8.5.11.4.4 SHR

Block that performs a binary logical right shift operation in a value passed by Value, storing the result
in Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 999

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable to undergo shift

Shift BYTE USINT Shift index

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of logical shifts right, according to the Shift value.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1000

The above example performs a logical right shift by two positions in the VALUE variable whose initial
value is 124 (0111 1100 in binary). The bits on the right are being discarded, and on the left new zeros
are inserted. The final result (0001 1111 in binary) is stored in RESULT.

The above example performs a logical right shift by three positions in the VALUE variable whose initial
value is -98 (1001 1110 in binary). The bits on the right are being discarded, and on the left new zeros
are inserted. The final result (0001 0011 in binary) is stored in RESULT.

11.8.5.12 Math

11.8.5.12.1 Math Basic

11.8.5.12.1.1 ABS

Block that calculates the Value module, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Reference variable for the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the absolute value of the

Equipments (Devices)

WPS v2.5X | 1001

Value variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not
set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the absolute value of the VALUE variable whose initial value is -45,
storing the final result, 45, in RESULT.

The above example calculates the absolute value of the VALUE variable whose initial value is -45. The
final result, 128, cannot be stored in RESULT, because it is outside the limits of accepted values by
SINT type. Therefore, RESULT remains unchanged and the output is disabled.

Equipments (Devices)

WPS v2.5X | 1002

11.8.5.12.1.2 ADD

Block that calculates the sum of the values of Value1 and Value2, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First addend of the operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second addend of the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the sum of Value1 and Value2
variables. If no errors, the Done variable is set. If there is any error in the operation, Done is not set,
staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1003

Example

The above example calculates the sum of VALUE 1 and VALUE2 variables, storing the final result in
RESULT.

The above example calculates the sum of VALUE 1 and VALUE2 variables, storing the final result in
RESULT. Notice that the block accepts arguments of both signs.

Equipments (Devices)

WPS v2.5X | 1004

The above example calculates the sum of VALUE1 and VALUE2 variables. The final result -170
cannot be stored in RESULT, because it is outside the limits of accepted values by SINT type.
Therefore, RESULT remains unchanged and the output is disabled.

11.8.5.12.1.3 DIV

Block that calculates the division of the values of Value1 and Value2, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Dividend of the operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Divisor of the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the division of Value1 and
Value2 variables. The value stored will be the exact division if Result is REAL, or, in other cases, only
the quotient. If no errors, the Done variable is set. If there is any error in the operation, Done is not
set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1005

Example

The above example calculates the division of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Since RESULT is SINT type, only the quotient is stored in it.

The above example calculates the division of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Since RESULT is of REAL type, the exact value of the division is stored in it.

Equipments (Devices)

WPS v2.5X | 1006

The above example calculates the division of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Since RESULT is SINT type, only the quotient is stored in it. Notice that the block
accepts arguments of both signs.

The above example calculates the division of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Since VALUE2 is zero, the block generates a runtime error, RESULT remains unchanged
and the output is disabled.

11.8.5.12.1.4 MOD

Block that calculates the remainder of the values of Value1 and Value2, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT
Dividend of the operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT
Divisor of the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT

Variable that stores the result of the

operation

Operation

Equipments (Devices)

WPS v2.5X | 1007

When this block has a TRUE value in EN, it sends to the Result output the remainder of Value1 and
Value2 variables. If no errors, the Done variable is set. If there is any error in the operation, Done is
not set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the remainder of VALUE 1 and VALUE2 variables, storing the final
result in RESULT.

Equipments (Devices)

WPS v2.5X | 1008

The above example calculates the remainder of VALUE 1 and VALUE2 variables, storing the final
result in RESULT. Notice that the block accepts arguments of both signs.

The above example calculates the remainder of VALUE 1 and VALUE2 variables, storing the final
result in RESULT. Since VALUE2 is zero, the block generates a runtime error, RESULT remains
unchanged and the output is disabled.

11.8.5.12.1.5 MUL

Block that calculates the multiplication of the values of Value1 and Value2, storing the result in
Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First factor of the operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second factor of the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

Equipments (Devices)

WPS v2.5X | 1009

When this block has a TRUE value in EN, it sends to the Result output the multiplication of Value1
and Value2 variables. If no errors, the Done variable is set. If there is any error in the operation, Done
is not set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the product of VALUE 1 and VALUE2 variables, storing the final result
in RESULT.

Equipments (Devices)

WPS v2.5X | 1010

The above example calculates the product of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Notice that the block accepts arguments of both signs.

The above example calculates the product of VALUE1 and VALUE2 variables. The final result 224
cannot be stored in RESULT, because it is outside the limits of accepted values by SINT type.
Therefore, RESULT remains unchanged and the output is disabled.

11.8.5.12.1.6 NEG

Block that calculates the opposite (i.e., the product with -1) of a value passed by Value, storing the
result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Reference variable for the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the opposite of the Value
variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not set,
staying in FALSE status, while Result remains with its value unchanged.

Equipments (Devices)

WPS v2.5X | 1011

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the opposite of the VALUE variable whose initial value is 21, storing
the final result, -21, in RESULT.

The above example calculates the opposite of the VALUE variable whose initial value is -56, storing
the final result, 56, in RESULT.

Equipments (Devices)

WPS v2.5X | 1012

]

The above example calculates the opposite of the VALUE variable whose initial value is -128. The final
result, 128, cannot be stored in RESULT, because it is outside the limits of accepted values by SINT
type. Therefore, RESULT remains unchanged and the output is disabled.

11.8.5.12.1.7 SUB

Block that calculates the subtraction between the Value1 and Value2 values, storing the result in
Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Minuend of operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Subtrahend of operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the subtraction of Value1 and
Value2 variables. If no errors, the Done variable is set. If there is any error in the operation, Done is
not set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1013

Example

The above example calculates the subtraction of VALUE 1 and VALUE2 variables, storing the final
result in RESULT.

The above example calculates the subtraction of VALUE 1 and VALUE2 variables, storing the final
result in RESULT. Notice that the block accepts arguments of both signs.

Equipments (Devices)

WPS v2.5X | 1014

The above example calculates the subtraction of VALUE1 and VALUE2 variables. The final result 141
cannot be stored in RESULT, because it is outside the limits of accepted values by SINT type.
Therefore, RESULT remains unchanged and the output is disabled.

11.8.5.12.2 Math Extended

11.8.5.12.2.1 ALOG10

Block that calculates the antilogarithm (exponent with base 10) of the Value value, storing the result
in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the antilogarithm of the Value
variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not set,
staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1015

Example

The above example calculates the antilogarithm of the VALUE variable, storing the final result in
RESULT. The block ends with success and Done output is activated.

The above example calculates the antilogarithm of the VALUE variable, storing the final result in
RESULT. The indicated value is the minimum input value for which the block revolutions a nonzero
result. The block ends with success and Done output is activated.

The above example calculates the antilogarithm of the VALUE variable, storing the final result in

Equipments (Devices)

WPS v2.5X | 1016

RESULT. Below the minimum values cause the block to return a null value. The block ends with
success and Done output is activated.

The above example calculates the antilogarithm of the VALUE variable, storing the final result in
RESULT. The indicated value is the maximum input value for which the block revolutions a valid result.
The block ends with success and Done output is activated.

The above example calculates the antilogarithm of the VALUE variable, storing the final result in
RESULT. Values higher than the maximum cause the block to generate an error, the RESULT output
remains unchanged and Done output is disabled.

11.8.5.12.2.2 EXP

Block that calculates the exponential of the Euler number "and" raised to the value of Value, storing
the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the exponent of the Euler
number "and" raised to the Value variable. If no errors, the Done variable is set. If there is any error in
the operation, Done is not set, staying in FALSE status, while Result remains with its value
unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Equipments (Devices)

WPS v2.5X | 1017

Block Flowchart

Example

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
The block ends with success and Done output is activated.

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
The indicated value is the minimum input value for which the block revolutions a nonzero result. The
block ends with success and Done output is activated.

Equipments (Devices)

WPS v2.5X | 1018

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
Values below the minimum cause the block to return to a null value. The block ends with success
and Done output is activated.

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
The indicated value is the maximum input value for which the block revolutions a valid result. The
block ends with success and Done output is activated.

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
Values higher than the maximum cause the block to generate an error, the RESULT output remains
unchanged and Done output is disabled.

11.8.5.12.2.3 LN

Block that calculates the natural logarithm of the Value value, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the natural logarithm of the
Value variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not
set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Equipments (Devices)

WPS v2.5X | 1019

Block Flowchart

Example

The above example calculates the natural logarithm of the VALUE variable, storing the final result in
RESULT. The block ends with success and Done output is activated.

The above example calculates the natural logarithm of the VALUE variable, storing the final result in
RESULT. The block generates a runtime error, since VALUE has value zero, and Done output is
disabled.

Equipments (Devices)

WPS v2.5X | 1020

11.8.5.12.2.4 LOG10

Block that calculates the common logarithm (base 10) of the Value value, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the common logarithm of the
Value variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not
set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1021

Example

The above example calculates the common logarithm of the VALUE variable, storing the final result in
RESULT. The block ends with success and Done output is activated.

The above example calculates the common logarithm of the VALUE variable, storing the final result in
RESULT. The block generates a runtime error, since VALUE has negative value, and Done output is
disabled.

11.8.5.12.2.5 POW

Block that calculates the value of Value raised to the exponent Power, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value REAL Base of the operation

Power REAL Exponent of the operation

VAR_OUTPUT

Done BOOL End of operation

Result REAL
Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of Value raised to
the exponent Power. If no errors, the Done variable is set. If there is any error in the operation, Done
is not set, staying in FALSE status, while Result remains with its value unchanged.

Equipments (Devices)

WPS v2.5X | 1022

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the value of VALUE raised to the POWER variable, storing the final
result in RESULT. The block ends with success and Done output is activated.

The above example calculates the value of VALUE raised to the POWER variable, storing the final
result in RESULT. The block ends with success and Done output is activated.

Equipments (Devices)

WPS v2.5X | 1023

The above example calculates the value of VALUE raised to the POWER variable, storing the final
result in RESULT. Since the result is higher than the maximum supported by REAL type, the block
generates an error and Done output is disabled.

11.8.5.12.2.6 ROUND

Block that rounds the value of Value, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT

Done BOOL End of operation

Result REAL
Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the rounded value of Value. If
no errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Compatibility

Device Version

PLC300 2.10 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1024

Example

The above example rounds the value of the VALUE variable, storing the final result in RESULT.
Decimals less than 0.5 are discarded. The block ends with success and Done output is activated.

The above example rounds the value of the VALUE variable, storing the final result in RESULT.
Decimals greater than or equal to 0.5 promote unity value immediately above. The block ends with
success and Done output is activated.

11.8.5.12.2.7 SQRT

Block that calculates the square root value of Value, storing the result in Result.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1025

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the square root value of
Value. If no errors, the Done variable is set. If there is any error in the operation, Done is not set,
staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1026

The above example calculates the square root value of the VALUE variable, storing the final result in
RESULT. The block ends with success and Done output is activated.

The above example calculates the square root value of the VALUE variable, storing the final result in
RESULT. The block generates a runtime error, since VALUE has negative value, and Done output is
disabled.

11.8.5.12.2.8 TRUNC

Block that truncates the value of Value, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT

Done BOOL End of operation

Result REAL
Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the truncated value of Value. If
no errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Compatibility

Equipments (Devices)

WPS v2.5X | 1027

Device Version

PLC300 2.10 or higher

SCA06 2.00 or higher

Block Flowchart

Example

The above example truncates the value of the VALUE variable, storing the final result in RESULT.
Decimals are discarded. The block ends with success and Done output is activated.

11.8.5.12.3 Math Trigonometry

11.8.5.12.3.1 ACOS

Block that calculates the arccosine of Value, storing the result in Angle.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1028

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value of cosine

VAR_OUTPUT
Done BOOL End of operation

Angle REAL Value of the angle w hose cosine is equal to Value (in radians)

Operation

When this block has a TRUE value in EN, it sends to the Angle output the arccosine of Value. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Angle remains with its value unchanged.

When EN has FALSE value, Angle remains unchanged and Done remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1029

The above example calculates the arc, in radians, whose cosine is the VALUE variable, storing the
final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the arc, in radians, whose cosine is the VALUE variable, storing the
final result in RESULT. The block generates a runtime error, since VALUE has value inferior to 1, and
Done output is disabled.

11.8.5.12.3.2 ASIN

Block that calculates the arcsine of Value, storing the result in Angle.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value of sine

VAR_OUTPUT
Done BOOL End of operation

Angle REAL Value of the angle w hose sine is equal to Value (in radians)

Operation

When this block has a TRUE value in EN, it sends to the Angle output the arcsine of Value. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Angle remains with its value unchanged.

When EN has FALSE value, Angle remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1030

Example

The above example calculates the arc, in radians, whose sine is the VALUE variable, storing the final
result in RESULT. The block ends with success and Done output is activated.

The above example calculates the arc, in radians, whose sine is the VALUE variable, storing the final
result in RESULT. The block generates a runtime error, since VALUE has value superior to 1, and
Done output is disabled.

Equipments (Devices)

WPS v2.5X | 1031

11.8.5.12.3.3 ATAN

Block that calculates the arctangent of Value, storing the result in Angle.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value of tangent

VAR_OUTPUT
Done BOOL End of operation

Angle REAL Value of the angle w hose tangent is equal to Value (in radians)

Operation

When this block has a TRUE value in EN, it sends to the Angle output the arctangent of Value. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Angle remains with its value unchanged.

When EN has FALSE value, Angle remains unchanged and Done remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1032

The above example calculates the arc, in radians, whose tangent is the VALUE variable, storing the
final result in RESULT. The arc, for positive values, is always in the first quadrant. The block ends with
success and Done output is activated.

The above example calculates the arc, in radians, whose tangent is the VALUE variable, storing the
final result in RESULT. The arc, for negative values, is always in the fourth quadrant. The block ends
with success and Done output is activated.

11.8.5.12.3.4 ATAN2

Block that calculates the arctangent of Y/X, storing the result in Angle.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

X REAL Parameter X of the function

Y REAL Parameter Y of the function

VAR_OUTPUT
Done BOOL End of operation

Angle REAL Value of the angle w hose tangent is equal to (Y/X) (in radians)

Operation

When this block has a TRUE value in EN, it sends to the Angle output the arctangent of Y/X. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Angle remains with its value unchanged.

When EN has FALSE value, Angle remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1033

Example

The above example calculates the arc, in radians, whose tangent is the Y/X variable, storing the final
result in RESULT. The arc, for positive values of X and Y, is always in the first quadrant. The block
ends with success and Done output is activated.

The above example calculates the arc, in radians, whose tangent is the Y/X variable, storing the final

Equipments (Devices)

WPS v2.5X | 1034

result in RESULT. The arc, for negative values of X and positive values of Y, is always in the second
quadrant. The block ends with success and Done output is activated.

The above example calculates the arc, in radians, whose tangent is the Y/X variable, storing the final
result in RESULT. The arc, for negative values of X and Y, is always in the third quadrant. The block
ends with success and Done output is activated.

The above example calculates the arc, in radians, whose tangent is the Y/X variable, storing the final
result in RESULT. The arc, for positive values of X and negative values of Y, is always in the fourth
quadrant. The block ends with success and Done output is activated.

11.8.5.12.3.5 COS

Block that calculates the cosine of Angle, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Angle REAL Angle (in radians)

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the cosine of Angle. If no

Equipments (Devices)

WPS v2.5X | 1035

errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the cosine of the VALUE variable, interpreted in radians, storing the
final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the cosine of the VALUE variable, interpreted in radians, storing the
final result in RESULT. The block ends with success and Done output is activated. Notice that the
block accepts negative input values and greater than one turn.

Equipments (Devices)

WPS v2.5X | 1036

11.8.5.12.3.6 SIN

Block that calculates the sine of Angle, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Angle REAL Angle (in radians)

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the sine of Angle. If no errors,
the Done variable is set. If there is any error in the operation, Done is not set, staying in FALSE
status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1037

The above example calculates the sine of the VALUE variable, interpreted in radians, storing the final
result in RESULT. The block ends with success and Done output is activated.

The above example calculates the sine of the VALUE variable, interpreted in radians, storing the final
result in RESULT. The block ends with success and Done output is activated. Notice that the block
accepts negative input values.

The above example calculates the sine of the VALUE variable, interpreted in radians, storing the final
result in RESULT. The block ends with success and Done output is activated. Notice that the block
accepts values greater than one full turn.

11.8.5.12.3.7 TAN

Block that calculates the tangent of Angle, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Angle REAL Angle (in radians)

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

Equipments (Devices)

WPS v2.5X | 1038

When this block has a TRUE value in EN, it sends to the Result output the tangent of Angle. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the tangent of the VALUE variable, interpreted in radians, storing the
final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the tangent of the VALUE variable, interpreted in radians, storing the
final result in RESULT. The block ends with success and Done output is activated. Notice that the
block accepts negative input values and greater than one turn.

Equipments (Devices)

WPS v2.5X | 1039

11.8.5.12.4 Math Util

11.8.5.12.4.1 MAX

Block that compares the values of Value1 and Value2 and stores the highest of them in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Highest of the values compared

Operation

When this block has a TRUE value in EN, it sends to the Result output the highest value in the
comparison between Value1 and Value2. If no errors, the Done variable is set. If there is any error in
the operation, Done is not set, staying in FALSE status, while Result remains with its value
unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1040

Example

The above example calculates the maximum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the maximum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. The block ends with success and Done output is activated. Notice that the
types of the input variables can be different without causing execution problems.

Equipments (Devices)

WPS v2.5X | 1041

The above example calculates the maximum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. Since the result is higher than the maximum supported by SINT type, the
block generates an error and Done output is disabled.

11.8.5.12.4.2 MIN

Block that compares the values of Value1 and Value2 and stores the lowest of them in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Low est of the values compared

Operation

When this block has a TRUE value in EN, it sends to the Result output the lowest value in the
comparison between Value1 and Value2. If no errors, the Done variable is set. If there is any error in
the operation, Done is not set, staying in FALSE status, while Result remains with its value
unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1042

Example

The above example calculates the minimum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the minimum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. The block ends with success and Done output is activated. Notice that the
types of the input variables can be different without causing execution problems.

Equipments (Devices)

WPS v2.5X | 1043

The above example calculates the minimum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. Since the result is lower than the minimum supported by SINT type, the
block generates an error and Done output is disabled.

11.8.5.12.4.3 SAT

Block that performs a routine for saturation of the value found in Value in accordance with the limits
for Minimum and Maximum, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Reference value

Minimum
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Inferior saturation value

Maximum
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Superior saturation value

VAR_OUTPUT

Q BOOL
Indicator that there w as saturation in the

process

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Result of operation

Operation

When this block has a TRUE value in EN, it performs a comparison between Value and Minimum and
Maximum. If Value is in the range between Minimum and Maximum, Result receives the value of
Value and Q remains FALSE. If Value is higher than Maximum, Result receives Maximum and Q
receives TRUE. If Value is lower than Minimum, Result receives Minimum and Q receives TRUE. If
there is any error in the operation, Q is not set, staying in FALSE status, while Result remains with
its value unchanged.

Equipments (Devices)

WPS v2.5X | 1044

When EN has FALSE value, Result remains unchanged and Q remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1045

The above example passes the VALUE value to RESULT, since it is not lower than MINIMUM or
higher than MAXIMUM. The block ends successfully and the Q output is disabled, since there was no
saturation.

The above example passes the MAXIMUM to RESULT, since VALUE is higher than MAXIMUM. The
block ends successfully and the Q output is activated, since there was saturation.

The above example passes the MINIMUM to RESULT, since VALUE is lower than MINIMUM. The
block ends successfully and the Q output is activated, since there was saturation.

Equipments (Devices)

WPS v2.5X | 1046

The above example passes the MAXIMUM value to RESULT, since VALUE is higher than MAXIMUM.
The block ends successfully and the Q output is activated, since there was saturation.

11.8.5.13 Module

11.8.5.13.1 CALL

Block that loads a file and do a ladder call.

Ladder Representation

Block Structure

Variable Type Name Data type Description

VAR_INPUT

EN BOOL Block enabling

FILENAME# STRING
Ladder f ile name (POU) enclosed in gingle

quotation marks

VAR_OUTPUT ENO BOOL End of operation

VAR CALL_INST_0 CALL Instance of access to block structure

Operation

When this block has a TRUE value in EN, it updates the values of internal fields with the input
variables, performs the Ladder routine loading the file and updates the values of the outputs after
completing routine.

When EN has FALSE value, outputs remain unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Compatibility

Equipments (Devices)

WPS v2.5X | 1047

Device Version

PLC300 4.03 or higher

Block Flowchart

Example

In the example below, the POU 'Program2' will be executed through the 'Main Ladder'.

11.8.5.13.2 USERFB

Block that performs a subroutine programmed by the user.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1048

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

INPUT
According to user

programming
Block inputs

VAR_OUTPUT

ENO BOOL End of operation

OUTPUT
According to user

programming
Block outputs

VAR_IN_OUT IN_OUT
According to user

programming
Block inputs/outputs

VAR MYUSERFB_INST_0 MYUSERFB Instance of access to block structure

Operation

When this block has a TRUE value in EN, it updates the values of internal fields with the input
variables, performs the Ladder routine programmed by the user and updates the values of the outputs
after completing routine.

When EN has FALSE value, outputs remain unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

NOTE!
Refer to section Working with USERFBs for further information.

Compatibility

Device Version

PLC300 1.50 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1049

11.8.5.14 RTC

11.8.5.14.1 INTIME

Block that performs a programmed enabling for a time based on RTC (Real Time Clock).

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1050

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

TIMEON_HOUR WORD UINT Enabling hour

TIMEON_MINUTE WORD UINT Enabling minute

TIMEON_SECOND WORD UINT Enabling second

TIMEOFF_HOUR WORD UINT Disabling hour

TIMEOFF_MINUTE WORD UINT Disabling minute

TIMEOFF_SECOND WORD UINT Disabling second

Q_OPTION# BYTE Output operation

VAR_OUTPUT Q BOOL Block output

Operation

When this block has a TRUE value in EN, it has two modes of operation. If Q_OPTION# is Normal, Q
is enabled when the internal clock's time is equal to that defined by the parameters TIMEON and
disabled when the internal clock's time is equal to the parameters set by TIMEOFF. If Q_OPTION# is
Inverted, Q is disabled when the internal clock's time is equal to that defined by the parameters
TIMEON and enabled when the internal clock's time is equal to the parameters set by TIMEOFF.

When EN has FALSE value, Q remains FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1051

Example

In the example above, the INTIME block is enabled, the Q_OPTION# input is enabled for NORMAL
operation and the current time of the internal clock of the device is lower than the registered enabling
inputs of the block (HOUR_ON, MINUTE_ON and SECOND_ON). This way, the Q output is disabled.

In the example above, the INTIME block is enabled, the Q_OPTION# input is enabled for NORMAL
operation and the current time of the internal clock of the device is equal to the registered in the
enabling inputs of the block (HOUR_ON, MINUTE_ON and SECOND_ON). This way, the Q output is
disabled.

Equipments (Devices)

WPS v2.5X | 1052

In the above example, the INTIME block is disabled. This way, regardless of the input, the Q output is
disabled.

In the example above, the INTIME block is enabled, the Q_OPTION# input is enabled for NORMAL
operation and the current time of the internal clock of the device is equal to the registered in the
disabling inputs of the block (HOUR_OFF, MINUTE_OFF and SECOND_OFF). This way, the Q
output is enabled.

Equipments (Devices)

WPS v2.5X | 1053

In the example above, the INTIME block is enabled, the Q_OPTION# input is enabled for NORMAL
operation and the current time of the internal clock of the device is superior to the registered in the
disabling inputs of the block (HOUR_OFF, MINUTE_OFF and SECOND_OFF). Thus, the Q output is
disabled.

11.8.5.14.2 INWEEKDAY

Block that performs a programmed enabling for weekdays based on RTC (Real Time Clock).

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1054

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

SUNDAY# BOOL Enabled on Sundays

MONDAY# BOOL Enabled on Mondays

TUESDAY# BOOL Enabled on Tuesdays

WEDNESDAY# BOOL Enabled on Wednesdays

THURSDAY# BOOL Enabled on Thursdays

FRIDAY# BOOL Enabled on Fridays

SATURDAY# BOOL Enabled on Saturdays

Q_OPTION# BYTE Output operation

VAR_OUTPUT Q BOOL Block output

Operation

When this block has a TRUE value in EN, it has two modes of operation. If Q_OPTION# is Normal, Q
is enabled if the day of week of the internal clock has Enabled parameter in the block. If Q_OPTION#
is Inverted, Q is disabled if the day of week of the internal clock has Enabled parameter in the block.

When EN has FALSE value, Q remains FALSE.

NOTE!
The weekdays are identified by numbers, with Sunday being day 0 and Saturday day 6.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1055

Example

Equipments (Devices)

WPS v2.5X | 1056

In the above example, the INWEEKDAY block is disabled. This way, regardless of the input, the Q
output is disabled.

In the example above, the INWEEKDAY block is enabled and Q_OPTION# input is enabled for
NORMAL operation. The current day of the week of the device's internal clock is Wednesday (value
3), which has ENABLED status in the programming. This way, the Q output is enabled.

In the example above, the INWEEKDAY block is enabled and Q_OPTION# input is enabled for
NORMAL operation. The current day of the week of the device's internal clock is Thursday (value 4),
which has DISABLED status in the programming. Thus, the Q output is disabled.

Equipments (Devices)

WPS v2.5X | 1057

In the example above, the INWEEKDAY block is enabled and Q_OPTION# input is enabled for
INVERTED operation. The current day of the week of the device's internal clock is Thursday (value 4),
which has DISABLED status in the programming. This way, the Q output is enabled.

11.8.5.15 Screen

11.8.5.15.1 SETSCREEN

Block that displays a particular screen in the HMI.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

NUMBER
BYTE UINT

USINT WORD
Screen number to be displayed

VAR_OUTPUT Q BOOL Block output

VAR SETSCREEN_INST_0 SETSCREEN Instance of access to block structure

Operation

When this block detects a leading edge on EN, it displays the screen represented by the HMI
NUMBER.
Q receives TRUE for one scan cycle if the screen number is valid.

When EN has FALSE value, Q remains FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1058

Example

The following example enables screen 3 by 4 seconds at each pulse in DI1.

In the beginning, it is considered TELA_3 with FALSE value, activating the input
SETSCREEN_INST_0 block that displays the HOME.

Equipments (Devices)

WPS v2.5X | 1059

By identifying a pulse in DI1, TELA_3 receives TRUE value, activating the input SETSCREEN_INST_1
block that displays screen 3.

Even with the signal DI1 removed, TELA_3 continues with the TRUE value, that is, the screen 3
remains displayed.

After the four seconds if DI1 is still TRUE, the HOME screen is still displayed. Screen 3 will only be
displayed when there is a new leading edge in DI1.

11.8.5.16 String

11.8.5.16.1 STR_COMPARE

Block that performs the comparison between STRINGs.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1060

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

STR1 STRING First STRING of the comparison

STR2 STRING Second STRING of the comparison

SENSITIVE BOOL Selects w hether the comparison w ill be case insensitive or not

VAR_OUTPUT
DONE BOOL Output enabling

COMP BYTE Value of comparison

Operation

This block remains active as long as EN is at TRUE level by updating the value of COMP according to
the input STRINGs. The SENSITIVE input with value TRUE forces the comparison to consider
uppercase and lowercase letters, while a FALSE value ignores this differentiation. The values that
COMP can take are:

0, if both are the same;
-1, if STR1 comes first in alphabetical order;
1, if STR1 comes after in alphabetical order.

The comparison takes into account the values of the ASCII table for the characters.

The DONE value forwards to the next Ladder block the EN value when the operation is completed.

Compatibility

Device Version

PLC300 2.10 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1061

Example

In the above example, the ASCII code for 'a', first character of STR1, is smaller than that of 'c', first

Equipments (Devices)

WPS v2.5X | 1062

character of STR2. Thus, COMP receives the value -1. When the block is finished successfully, the
DONE output is activated.

In the above example, the ASCII code for 'a', first character of STR1, is greater than that of '.', first
character of STR2. Thus, COMP receives the value 1. When the block is ended successfully, the
DONE output is activated.

In the example above, STR1 and STR2 are the same. Therefore, COMP receives the value of 0. When
the block ends successfully, Done output is activated.

In the example above, STR1 and STR2 are the same, disregarding uppercase and lowercase
(SENSITIVE with FALSE value). Therefore, COMP receives the value of 0. When the block ends
successfully, Done output is activated.

Equipments (Devices)

WPS v2.5X | 1063

In the example above, STR1 and STR2 are the different, considering uppercase and lowercase
(SENSITIVE with FALSE value). The ASCII code for 'a', first character of STR1, is greater than that of
'A', first character of STR2. Thus, COMP receives the value 1. When the block is ended successfully,
the DONE output is activated.

11.8.5.16.2 STR_CONCAT

Block that performs concatenation of STR1 and STR2, storing the result in DST.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

STR1 STRING First STRING

STR2 STRING Second STRING

VAR_OUTPUT

DONE BOOL Output enabling

DST BYTE
Variable that receives the new STRING formed from the junction

of STR1 and STR2

Operation

This block remains active as long as EN is at TRUE level, updating the value of DST according to the
input STRINGs. DST receives STR1 value concatenated with STR2 value at its end.

The DONE value forwards to the next Ladder block the EN value when the operation is completed.

NOTE!
If the size of DST is less than the sum of the number of characters STR1 and STR2, the resulting
value will be truncated.

Compatibility

Device Version

PLC300 2.10 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1064

Example

In the above example, STR1 and STR2 are concatenated, and the result is sent to DST_10. When the
block is ended successfully, the DONE output is activated.

In the above example, STR1 and STR2 are concatenated, and the result is sent to DST_6. Since the
size of DST_6 is 6, the last two characters of the concatenation are discarded. The block ends
successfully, Done output is activated.

11.8.5.16.3 STR_COPY

Block that performs a copy of a section of STR, storing the result in DST.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1065

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

STR STRING Original STRING

POS BYTE Position from w hich the copy w ill begin

LEN BYTE Number of characters to be copied from POS

VAR_OUTPUT
DONE BOOL Output enabling

DST BYTE Variable that receives the new STRING

Operation

This block remains active as long as EN is at TRUE level, updating the value of DST according to the
input parameters. DST receives a number of characters from STR1 defined by LEN from the inserted
position in POS.

If POS is outside the allowable range of values (between 1 and the size of STR), DONE receives
FALSE and DST remains unchanged.

If successful, the DONE value forwards to the next Ladder block the EN value when the operation is
completed.

NOTE!
POS is treated with index "based one". That is, POS = 1 references the first position of STR.

NOTE!
If the size of DST is less than the number of characters copied from STR, the resulting value will
be truncated.

Compatibility

Device Version

PLC300 2.10 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1066

Example

In the above example, as the value of POS is invalid, the block is not completed successfully, and the
DONE output is disabled.

Equipments (Devices)

WPS v2.5X | 1067

In the example above, two characters are copied from position 1 of STR1, and the result is sent to
DST_2. When the block is ended successfully, the DONE output is activated.

In the example above, zero characters are copied from position 1 of STR1, and the result is sent to
DST_2. When the block is ended successfully, the DONE output is activated. Note that, when LEN is
zero, the output is always built as a null STRING.

In the example above, two characters are copied from position 4 of STR1, and the result is sent to
DST_2. When the block is ended successfully, the DONE output is activated. Note that if POS + LEN
is greater than the size of STR1, only the remaining characters from STR1 are copied, without
generating an error.

In the example above, three characters are copied from position 2 of STR1, and the result is sent to
DST_2. Since the size of DST_2 is 2, the last character copied is discarded. The block ends
successfully, Done output is activated.

11.8.5.16.4 STR_COPY_LAST

Block that performs a copy of a final section of STR, storing the result in DST.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1068

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

STR STRING Original STRING

LEN BYTE Number of characters to be copied from the end of STR

VAR_OUTPUT
DONE BOOL Output enabling

DST BYTE Variable that receives the new STRING

Operation

This block remains active as long as EN is at TRUE level, updating the value of DST according to the
input parameters. DST receives a number of characters from STR1 defined by LEN from the final
position of STR, returning toward the beginning.

The DONE value forwards to the next Ladder block the EN value when the operation is completed.

NOTE!
If the size of DST is less than the number of characters copied from STR, the resulting value will
be truncated.

Compatibility

Device Version

PLC300 2.10 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1069

Example

In the example above, zero characters are copied from final position STR1, and the result is sent to
DST_6. When the block is ended successfully, the DONE output is activated. Note that, when LEN is
zero, the output is always built as a null STRING.

In the example above, two characters are copied from final position STR1, and the result is sent to
DST_6. When the block is ended successfully, the DONE output is activated.

Equipments (Devices)

WPS v2.5X | 1070

In the example above, four characters are copied from final position of STR1, and the result is sent to
DST_6. When the block is ended successfully, the DONE output is activated.

In the example above, eight characters are copied from final position STR1, and the result is sent to
DST_6. When the block is ended successfully, the DONE output is activated. Note that if LEN is
greater than the size of STR1, STR1 is copied in full, without generating an error.

In the example above, four characters are copied from final position of STR1, and the result is sent to
DST_2. Since the size of DST_2 is 2, the last two characters copied are discarded. The block ends
successfully, Done output is activated.

11.8.5.16.5 STR_DELETE

Block that deletes part of a section of STR, storing the remainder in DST.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

STR STRING Original STRING

POS BYTE Position from w hich the removal w ill begin

LEN BYTE Number of characters to be removed from POS

VAR_OUTPUT
DONE BOOL Output enabling

DST BYTE Variable that receives the new STRING

Operation

Equipments (Devices)

WPS v2.5X | 1071

This block remains active as long as EN is at TRUE level, updating the value of DST according to the
input parameters. A section defined by the POS initial position is removed from STR and a LEN size,
and the final result is stored in DST.

If POS is outside the allowable range of values (between 1 and the size of STR), DONE receives
FALSE and DST remains unchanged.

If successful, the DONE value forwards to the next Ladder block the EN value when the operation is
completed.

NOTE!
POS is treated with index "based one". That is, POS = 1 references the first position of STR.

NOTE!
If the size of DST is less than the sum of the number of remaining characters in STR, the
resulting value will be truncated.

Compatibility

Device Version

PLC300 2.10 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1072

Example

In the above example, as the value of POS is invalid, the block is not completed successfully, and the
DONE output is disabled.

Equipments (Devices)

WPS v2.5X | 1073

In the example above, two characters are deleted from position 2 of STR1, and the remaining
characters are sent to DST_6. When the block is ended successfully, the DONE output is activated.

In the example above, two characters are deleted from position 4 of STR1, and the remaining
characters are sent to DST_6. When the block is ended successfully, the DONE output is activated.
Note that if POS + LEN is greater than the size of STR1, only the remaining characters are deleted
from STR1, without generating an error.

In the example above, five characters are deleted from position 3 of STR1, and the remaining
characters are sent to DST_6. When the block is ended successfully, the DONE output is activated.
Note that if POS + LEN is greater than the size of STR1, only the remaining characters are deleted
from STR1, without generating an error.

In the example above, one character is deleted from position 1 of STR1, and the remaining characters
are sent to DST_2. Since the size of DST_2 is 2, the last character copied is discarded. The block
ends successfully, Done output is activated.

11.8.5.16.6 STR_FIND

Block that searches for the first occurrence of one STRING in another, returning the position of this
occurrence.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1074

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

STR1 STRING STRING w here the search w ill be performed

STR2 STRING STRING to be searched

START BYTE Initial search position

VAR_OUTPUT
DONE BOOL Output enabling

POS BYTE Position w here STR2 w as found

Operation

This block remains active as long as EN is at TRUE level, updating the value of POS according to the
input parameters.
A search in STR1 is performed, from the START position, by an occurrence of STR2.

If it is found, it inserts into the POS the occurrence of this position, while DONE forwards to the next
Ladder block the value of EN when ending the operation.

If it is not found or START receives value zero, DONE remains FALSE and POS remains unchanged.

NOTE!
POS is treated with index "based one". That is, POS = 1 references the first position of STR.

Compatibility

Device Version

PLC300 2.10 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1075

Example

Equipments (Devices)

WPS v2.5X | 1076

In the above example, a search for STR2 in STR1 from position 1 is done. Since STR2 is found in
position 1, POS receives 1. The block ends successfully, the DONE output is activated.

In the above example, as the value of START is invalid, the block is not completed successfully, and
the DONE output is deactivated.

In the above example, a search for STR2 in STR1 from position 2 is done. Since STR2 is found in
position 3, POS receives 3. The block ends successfully, the DONE output is activated.

In the above example, a search for STR2 in STR1 from position 2 is done. Since STR2 is found in
position 3, POS receives 3. The block ends successfully, the DONE output is activated.

In the above example, a search for STR2 in STR1 from position 2 is done. Since STR2 is not found,
POS remains unchanged and the DONE output is activated.

11.8.5.16.7 STR_FIND_LAST

Block that searches for the last occurrence of one STRING in another, returning the position of this
occurrence.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1077

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

STR1 STRING STRING w here the search w ill be performed

STR2 STRING STRING to be searched

VAR_OUTPUT
DONE BOOL Output enabling

POS BYTE Position w here STR2 w as found

Operation

This block remains active as long as EN is at TRUE level, updating the value of POS according to the
input parameters.
A search in STR1 is performed, from its last position, by an occurrence of STR2.

If it is found, it inserts into the POS the occurrence of this position, while DONE forwards to the next
Ladder block the value of EN when ending the operation.

If it is not found, DONE remains FALSE and POS remains unchanged.

NOTE!
POS is treated with index "based one". That is, POS = 1 references the first position of STR.

Compatibility

Device Version

PLC300 2.10 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1078

Example

Equipments (Devices)

WPS v2.5X | 1079

In the example above, a search is done by STR2 in STR1 from its final position. Since STR2 is found
in position 4, POS receives 4. The block ends successfully, the DONE output is activated.

In the example above, a search is done by STR2 in STR1 from its final position. Since STR2 is found
in position 2, POS receives 4. The block ends successfully, the DONE output is activated.

In the example above, a search is done by STR2 in STR1 from its final position. Since STR2 is not
found, POS remains unchanged and the DONE output is disabled.

11.8.5.16.8 STR_INSERT

Block that inserts a STRING in certain position of another, returning the resulting STRING.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

STR1 STRING STRING w here the insertion w ill be performed

STR2 STRING STRING to be inserted

POS BYTE Position w here STR2 w ill be inserted

VAR_OUTPUT
DONE BOOL Output enabling

DST STRING Resulting STRING

Operation

This block remains active as long as EN is at TRUE level, updating the value of DST according to the
input parameters.
An insertion in STR1 from the defined position POS of the STR2 content is performed.

If POS is outside the allowable range of values (between 1 and the size of STR plus one), DONE
receives FALSE and DST remains unchanged.

Equipments (Devices)

WPS v2.5X | 1080

If successful, the DONE value forwards to the next Ladder block the EN value when the operation is
completed.

NOTE!
POS is treated with index "based one". That is, POS = 1 references the first position of STR.

NOTE!
If the size of DST is less than the sum of the number of characters STR1 and STR2, the resulting
value will be truncated.

Compatibility

Device Version

PLC300 2.10 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1081

Example

In the above example, as the value of POS is invalid, the block is not completed successfully, and the
DONE output is disabled.

Equipments (Devices)

WPS v2.5X | 1082

In the above example, as the value of POS is invalid, the block is not completed successfully, and the
DONE output is disabled.

In the example above, an insertion of STR2 into STR1 from position 2 is done, and the result is sent
to DST_10. When the block is ended successfully, the DONE output is activated.

In the example above, is done of an insertion of STR2 into STR1 from position 4, and the result is sent
to DST_6. Since the size of DST_6 is 6, the last two characters copied are discarded. The block ends
successfully, Done output is activated.

11.8.5.16.9 STR_LENGTH

Block that calculates the size of a STRING.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

STR1 STRING Input STRING

VAR_OUTPUT
DONE BOOL Output enabling

LEN BYTE STRING size

Operation

Equipments (Devices)

WPS v2.5X | 1083

This block remains active as long as EN is at TRUE level, updating the value of LEN according to the
identified size of STR.

The DONE value forwards to the next Ladder block the EN value when the operation is completed.

Compatibility

Device Version

PLC300 2.10 or higher

Block Flowchart

Example

In the above example, the length of STRING in STR is calculated and the result is sent to LEN. The
block ends successfully, Done output is activated.

In the above example, the length of STRING in STR is calculated and the result is sent to LEN. The
block ends successfully, Done output is activated. Note that null STRINGS have length zero.

Equipments (Devices)

WPS v2.5X | 1084

11.8.5.16.10 STR_REPLACE

Block that replaced a section of a STRING by another STRING, returning the resulting STRING.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

STR1 STRING STRING w here the replacement w ill take place

STR2 STRING STRING to be inserted

POS BYTE Position w here STR2 w ill be inserted

LEN BYTE Number of characters to be replaced by STR2 in STR1

VAR_OUTPUT
DONE BOOL Output enabling

DST STRING Resulting STRING

Operation

This block remains active as long as EN is at TRUE level, updating the value of DST according to the
input parameters.
From the position defined in POS a number of characters defined by LEN are deleted. After that, in
this position, the content of STR2 is inserted.

If POS is outside the allowable range of values (between 1 and the size of STR plus one), DONE
receives FALSE and DST remains unchanged.

If successful, the DONE value forwards to the next Ladder block the EN value when the operation is
completed.

NOTE!
POS is treated with index "based one". That is, POS = 1 references the first position of STR.

NOTE!
If the size of DST is less than the sum of the number of remaining characters of STR1 and STR2,
the resulting value will be truncated.

Compatibility

Device Version

PLC300 2.10 or higher

Equipments (Devices)

WPS v2.5X | 1085

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1086

In the above example, as the value of POS is invalid, the block is not completed successfully, and the
DONE output is disabled.

In the above example, as the value of POS is invalid, the block is not completed successfully, and the
DONE output is disabled.

In the example above, a replacement of zero characters from the position 5 of STR1 is done by the
contents of STR2, and the result is sent to DST_10. When the block is ended successfully, the
DONE output is activated. Note that this block acted as a STR_INSERT.

In the example above, a replacement of zero characters from the position 2 of STR1 is done by the
contents of STR2, and the result is sent to DST_10. When the block is ended successfully, the
DONE output is activated. Note that this block acted as a STR_INSERT.

In the example above, a replacement of one character from the position 3 of STR1 is done by the
contents of STR2, and the result is sent to DST_10. When the block is ended successfully, the
DONE output is activated.

Equipments (Devices)

WPS v2.5X | 1087

In the example above, a replacement of eight characters from the position 2 of STR1 is done by the
contents of STR2, and the result is sent to DST_10. When the block is ended successfully, the
DONE output is activated. Note that if POS + LEN is greater than the size of STR1, only the
remaining characters from STR1 are replaced, without generating an error.

11.8.5.17 Timer

11.8.5.17.1 TOF

Timer block that, when energized, disables the output after a delay set by PT.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

IN BOOL Block enabling

PT
WORD UINT

DWORD UDINT
Delay of output deactivating

TIMEBASE WORD Time base for PT and ET

VAR_OUTPUT

Q BOOL Block output

ET
WORD UINT

DWORD UDINT
Counter elapsed time

VAR TOF_INST_0 TOF Instance of access to block structure

NOTE!
In CFW300, the PT e ET fields can only be WORD ou UINT type.

Operation

While the IN input is TRUE, the Q output is also TRUE and ET also receives the value zero.
On the negative transition edge in IN, counting is triggered and ET is incremented according to
TIMEBASE. When ET equals PT, the Q output goes to state FALSE until IN revolutions to FALSE.

Compatibility

Equipments (Devices)

WPS v2.5X | 1088

Device Version

PLC300 1.50 or higher

SCA06 2.00 or higher

Block Flowchart

Operation Diagram

Equipments (Devices)

WPS v2.5X | 1089

Example

The above example disables the DO1 output to identify a low level in DI1 for 12 seconds, remaining
disabled until DI1 again be TRUE.

11.8.5.17.2 TON

Timer block that, when energized, enables the output after a delay set by PT.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1090

Variable Type Name Data Type Description

VAR_INPUT

IN BOOL Block enabling

PT
WORD UINT

DWORD UDINT
Delay of output drive

TIMEBASE WORD Time base for PT and ET

VAR_OUTPUT

Q BOOL Block output

ET
WORD UINT

DWORD UDINT
Counter elapsed time

VAR TON_INST_0 TON Instance of access to block structure

NOTE!
In CFW300, the PT e ET fields can only be WORD ou UINT type.

Operation

While the IN input is FALSE, the Q output is FALSE and ET also receives the value zero.
On the edge positive transition in IN, counting is triggered and ET is incremented according to
TIMEBASE. When ET equals PT, the Q output goes to state TRUE until IN revolutions to FALSE.

Compatibility

Device Version

PLC300 1.50 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1091

Operation Diagram

Equipments (Devices)

WPS v2.5X | 1092

Example

The above example shows the initial conditions of the block and of the routine variables.

When activated the IN input, counting is triggered. Since ET equals PT, the Q output is enabled.

Note that a change in PRESET variable is not forwarded to the PT field while the IN entry remains
enabled.

Equipments (Devices)

WPS v2.5X | 1093

Disabling the IN input, the value of PT is updated and the Q output is disabled. When activating it
again, counting is triggered.

Disabling the IN input, the value of ET remains saved.

Enabling the IN input, the value of ET is reset and counting is triggered.

When ET reaches the value PT, the Q is output enabled and remains so while IN is at TRUE level.

11.8.5.17.3 TP

Timer block that, when identifies it is energized, enables the output after a delay set by PT.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1094

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

IN BOOL Block enabling

PT
WORD UINT

DWORD UDINT
Time w hile the output is enabled

TIMEBASE WORD Time base for PT and ET

VAR_OUTPUT

Q BOOL Block output

ET
WORD UINT

DWORD UDINT
Counter elapsed time

VAR TP_INST_0 TP Instance of access to block structure

NOTE!
In CFW300, the PT e ET fields can only be WORD ou UINT type.

Operation

On the edge positive transition in IN, Q receives TRUE value, counting is triggered and ET is
incremented according to TIMEBASE. When ET equals PT, the Q output goes to state FALSE until
IN revolutions to FALSE. At that moment, if IN is at TRUE level, nothing happens. On the edge
positive transition in IN, ET is automatically reset.

Compatibility

Device Version

PLC300 1.50 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1095

Operation Diagram

Equipments (Devices)

WPS v2.5X | 1096

Example

The above example enables the DO1 output for six seconds at each DI1 positive transition.

11.8.5.18 Tasks

Overview

A task is a scheduling mechanism very useful in real time systems to periodically control the performance of
programs, or whenever triggered by events.

Task configuration is carried out by adding task files to the Task folders, inside the resource. When the task
becomes enabled, programs that perform the logic of these task files are associated to them. A watchdog
(see Watchdog section) may be configured for every task. Every task has an associated system marker that
can be enabled or disabled through the program.

Inside a resource, there is a single task called Main that cannot be deleted, in which the main program (Main
Ladder) is run.

In the task folder option menu, it is possible to perform the following actions:

Equipments (Devices)

WPS v2.5X | 1097

Add a new task: in order to add a new task, it is necessary to select the New file option in the Task
folder.
Configuring the transition edge of digital inputs (DIs): digital inputs DI9 and DI10 have the option of
triggering events through a rising, falling, or rising and falling transition edge. The configuration of these
transition edges is made through the DI configuration window, which is accessed by selecting the DI Edge
Configuration option in the Task folder.

These DIs are used in tasks of the external event and count types.

Through the task folder option menu, it is possible to perform the following actions:

Equipments (Devices)

WPS v2.5X | 1098

Configuring tasks: in order to configure the task, it is necessary to select the Open option in the task file
to be configured. For further information on how to configure the tasks, see the Task configuration section.
Add, remove, or order task programs: in order to add, remove, or order programs of a certain task, it is
necessary to select the Select programs option in the task file to be configured. For further information on
how to select the programs, see Task configuration section in item List of programs.

Task Configuration

The following items are configured in the task configuration window:
Priority,
Sequence of programs,
Type of task, and
Task watchdog options.

Equipments (Devices)

WPS v2.5X | 1099

Priority: configured with a number between 0 and 30 (0 - higher priority, 30 - lower priority) which defines the
priority in which the task will be performed. In case a task with a higher priority than that of the running task
is activated, it will immediately start running. Otherwise, in case a task with a lower priority than that of the
current one is activated, it waits for the current task to stop running before it starts running.
List of programs: the selection window in the sequence of programs serves to add, remove, or change the
sequence of programs associated to a certain task. All programs available in the resource are included in
the left side list, and the programs selected for this task are on the right side. The order in which the
programs will start running will be the same order as the one defined in this list.

Equipments (Devices)

WPS v2.5X | 1100

Types of Tasks: The tasks are divided in: system, interval, single, external event, count, and freewheeling.

o System: This task may be of the Initialization or Stop type. When the Initialization option is selected,

the task will start running as soon as the user program runs for the first time. In case the Stop option is
selected, programs associated to this task will start running right after the user program stops.

Equipments (Devices)

WPS v2.5X | 1101

o Interval: Programs associated to this task run repeatedly within the time interval defined in the Time

interval field, being the delay time for the first performance defined in the Initial delay field. This task is
associated to a system variable that allows the task to be disabled through the program.

o Single: Programs associated to this task run one single time whenever the selected variable undergoes a

positive transition, i.e. from zero to some other value. This task is associated to a system variable that
allows the task to be disabled through the program.

Equipments (Devices)

WPS v2.5X | 1102

o External Event: Programs associated to this task run one single time whenever event DI9, DI10, or Pulse

Z is enabled. Events DI9 and DI10 have the option to select the transition that enables the task (see item
Configuring the transition edge of digital inputs in the Overview section). This task is associated to a
system variable that allows the task to be disabled through the program.

NOTE!
The options DI1 a DI8 are available from version 2.10.

o Count: The programs associated to this task are executed every time the pulse count on the selected

input (DI9, DI10, Pulse A, Pulse B, Pulse Z, Quadrature AB, Quadrature DI9/DI10, Dir/Pulse DI9/DI10) is
greater than the value of the variable defined in the Predefined field. The pulse count value is stored in
the Count variable. The pulse count value is reset when this value exceeds the value defined in the
Restart field. The variables configured in these fields can be of the DWORD and UDINT type for inputs
DI9, DI10, Pulse A, Pulse B and Pulse Z, and DINT for inputs quadrature AB. A system variable is
associated to this task which allows the task to be disabled through the program. The Dir/Pulse_DI9/DI10
option can be used as fast count up to 100 KHz.

Equipments (Devices)

WPS v2.5X | 1103

Important:
The Quadrature_DI9/DI10 and Dir/Pulse_DI9/DI10 functions cannot be used simultaneously in tasks or in
tasks and blocks;
The Quadrature_DI9/DI10 and Dir/Pulse_DI9/DI10 functions can be used in different blocks, provided that they
are not used in tasks.

NOTE!
Those options, after selected, will not cause error in case the others (DI9, DI10, Pulse A...) are
also selected.

Examples that do not generate compilation error:
two blocks in Quadrature_DI9/DI10;
two blocks one block Quadrature_DI9/DI10 and another Dir/Pulse_DI9/DI10;
two tasks Quadrature_DI9/DI10 or two tasks Dir/Pulse_DI9/DI10;

Examples that generate compilation error:
two tasks, one Quadrature_DI9/DI10 and another Dir/Pulse_DI9/DI10;
task Quadrature_DI9/DI10 and block Dir/Pulse_DI9/DI10;
task Dir/Pulse_DI9/DI10 and block Quadrature_DI9/DI10.

NOTE!
The Quadrature_DI9/DI10 and Dir/Pulse_DI9/DI10 options are available from version 2.0 up.

NOTE!
The options DI1 a DI8 are available from version 2.10.

o Freewheeling: Programs associated to this task run in a cyclic form. When the list of programs stops

running, the list of programs is reinitialized until the user program stops. The main program (Main Ladder)
is associated to this task, and it is not possible to remove it or associate it with another task.

Watchdog: When the watchdog option is activated, the user program stops with an error alarm in case the
task running time is longer than the time defined in the Time field for a higher number of times than that
defined in the Sensitivity field.

Equipments (Devices)

WPS v2.5X | 1104

o Time: Maximum time to run the task without watchdog error.
o Sensitivity: Number of watchdog errors allowed before generating the error alarm and stopping the user

program.

Compatibility

Device Version

PLC300 1.20 or higher

11.8.5.19 Structures

Structure is a data grouping used to define a recipe or an object.

In the Ladder program, it is possible to create variables of the structure type and use them in the blocks. To
access the internal members of the structure, the '.' is used followed by its respective member.

Creating a structure

1. With the right button of the mouse on the folder Structure, click on New file.

Figure 1: Creating a structure

2. Define the file name and press the Next button.

Equipments (Devices)

WPS v2.5X | 1105

Figure 2: Defining the structure name

3. Configure the structure using the buttons presented in the figure below.

Figure 3: Editing the Structure

4. After finishing the edition of the structure, click on the button Finish.

Equipments (Devices)

WPS v2.5X | 1106

Figure 4: Structure created in the project

Editing a structure

Just double click on the desired structure, as shown in figure 4, and a window will open as shown in figure 3,
allowing to insert new data, erase or move the position of the data.

11.8.5.20 Recipes

A recipe is a data set organized in the memory which define certain configurations for a process, such as:
time of each step, minimum and maximum values, setpoint, number of repetitions, etc.
In order to create a recipe table, first it is necessary to define the data that will compose it through a data
structure. To create a data structure, see the content Structures.

Creating a recipe

1. With the right button of the mouse on the folder Recipe, click on New file.

Equipments (Devices)

WPS v2.5X | 1107

Figure 1: Creating a Recipe

2. Define the file name and press the Next button.

Figure 2: Defining the Recipe name

3. Configure the recipe by configuring the fields as shown in the figure below.

Equipments (Devices)

WPS v2.5X | 1108

Figure 3: Editing the recipe

Storage
o RAM Memory: the recipe data are stored in the RAM memory, making its handling faster, but with

storage capacity limited to the memory of the PLC300.
o SD card: the recipe data are stored in files in the memory card, making its handling much slower, but

with storage capacity according to the capacity of the SD card.
Type
o It allows to select all the structures that were defined by the user in the project.

Data Table
o The columns represent the structure elements. Note that besides the member name, the respective data

type is also presented after the ‘:’;
o The lines represent each recipe.

4. After finishing the edition of the structure, click on the Finish button.

Equipments (Devices)

WPS v2.5X | 1109

Figure 4: Recipe created in the Project

Editing a recipe

Just double click on the desired structure, as shown in figure 4, and a window will open, as shown in figure 3,
allowing to insert new data, erase or move the position of the data.

Using Recipes

To use de recipe data, you must create a variable of the desired structure type:

Figure 5: Setting the variable

Equipments (Devices)

WPS v2.5X | 1110

Figure 6: Table containing the variable

After creating the variable, the block ReadRecipe should be used to load the recipe data for the variable or
WriteRecipe to record the data contained in the variable.

Figure 7: Block ReadRecipe configured

11.8.6 Screen

11.8.6.1 Alarms

Overview

Alarms are important tools in the automation of processes, allowing the user to monitor their plant by checking
critical points and signaling to the operator.
Configurable alarms in PLC300 are programmed by the user, being activated by a bit marker that can be
enabled by the Ladder program.
Internal alarms are relative to some hardware components that occupy the internal memory.
The alarms are configured through the Alarm Config screen accessed by the project folders:

Equipments (Devices)

WPS v2.5X | 1111

Alarm Configuration

In the alarm configuration window, it is configured:
Internal alarms: Alarms generated by the device that can be enabled or disabled by the user;
Limits: Maximum area taken by the user’s alarms and by the alarm history;
SD card: Alarm storage configurations in the SD card;
User’s alarm table: Table for configuration of the alarms activated through the variables of the device.

Internal alarms

The internal alarms are alarms generated by the device that can be enabled or disabled by the user. In order to

Equipments (Devices)

WPS v2.5X | 1112

access the internal alarm configuration window it is necessary to press the button in the alarm window.

The PLC 300 has six internal alarms, five o which can be enabled by the user:

Digital Output Fault: Indicates that some problem is occurring in some of the outputs DO1 and DO8.
Broken Wire: Current below 2 mA, when the AI1 analog input is in current mode 4 to 20mA.
Encoder Fault: One of the signals of the encoder is missing.
Supply of CAN: Power supply missing in the CAN interface.
SD card: This alarm occurs when there is a problem in the writing or reading of the SD card. The most
common problems are: SD card missing, card protected against writing and formatting of the file system
different from FAT32 .

Limits

In the field limits, the maximum area taken by the user’s alarms and by the alarm history is configured. The

button , in the limit field, opens the memory area configuration window. In this window you can configure
the size of the memory area that the user’s alarms and the user’s history must take.

The size that the user’s alarm takes in the memory is calculated through the formula:

Alarm size (bytes) = 32 + (80 x number of alarms)

The size that the alarm history takes in the memory is calculated through the formula:

Equipments (Devices)

WPS v2.5X | 1113

History size (bytes) = 32 x number of histories

SD Card

The SD card option, when enabled, configures the storage characteristics of the alarms in the SD card. The
storage of alarm files has the following options:

File extension: Format in which the alarms will be stored in the SD card. The options are:

o txt: text with formatting of easy comprehension for the users.

Equipments (Devices)

WPS v2.5X | 1114

o csv (comma separated value): comma separated values, generally used in spreadsheets.

The values stored are date, time, alarm (0 – internal, 1 – user’s alarm), action (A – actuated and N –
standardized) and description.

Interval: In the interval field, it is configured the duration time of the recording of the data in a single file. The
options of this field are the following:
o Single: The data will be recorded in a single file.
o Daily: The data are recorded in a file a day. The recording of a new file begins whenever the day on the

clock of the device changes. The file is recorded with a suffix containing the day, month and year on
which its recording began.

o Monthly: The data are recorded in a file a month. The recording of a new file begins whenever the month

on the clock of the device changes. The file is recorded with a suffix containing the month and year in
which its recording began.

o Annual: The data are recorded in a file a year. The recording of a new file begins whenever the year on

the clock of the device changes. The file is recorded with a suffix containing the year in which its recording
began.

Alarm type: Alarm values that will be stored in the SD card. They can be of the User type to store only the
alarms configured by the user or User+Internal to store the alarms configured by the user and the internal
alarms.
Remove: When this option is selected, the dialog box Number of files is enabled, allowing to input a
whole number. This number represents the number of files that will be maintained in the SD card. Whenever
a file is created daily, monthly or annually, the number of files created for this alarm is checked and then the
older files are removed.

User’s alarm table

In the user’s alarm table, the alarms activated are configured through variables of the devices with texts edited
by the user. The alarm table has four fields to be filled out:

Marker: Bit marker that activates the alarm. Global variable of the Boolean type.
Enable: Enable/Disable alarm option.

Equipments (Devices)

WPS v2.5X | 1115

Edge: Transition edge in which the alarm will be activated. The possible values are positive (from 0 to 1) or
negative (from 1 to 0).
Text 1: Text for the alarm message. This field can contain at most 15 characters. This text will be viewed in
the active alarm list and alarm history.
Text 2: Text for alarm message description. This field can contain at most 20 characters. This text will be
viewed in the detailed description of the active alarms and alarm history.

The view and configuration fields of text 2 are the followings:
Available space: Number of available characters for editing text. The maximum number of characters is
twenty (if the option show variable is selected, the space taken by the variable is added to the characters
taken by the text).
Show variable: It enables the option to show variable in text 2 of the alarm. If the text does not have the
variable location marking {0}, it is automatically added.
Variable: Variable that will be displayed in the text, in the position and format defined in the fields: position,
decimal digits, length and filling with zeros.
Decimal digits: Number of decimal digits for displaying the variable.
Position: Position in which the variable will be inserted. This is a read-only field and it is updated at each
position change.
Length: Space that will be reserved for displaying the variable. The user must take care to reserve enough
space for displaying signal and decimal point, if necessary.
Leading zeros: it fills the spaces that are empty between the configured length and the variable size with
zeros.

11.8.6.2 Screen Editor

Overview

The screen editor allows the user configuring the screens by adding and removing components, so that values
will be read and written in the program or showed on the display of the device.
The editor has function keys that allow browsing the screens or manipulating bits. A level of access can be
configured for each screen, so that only authorized users will see the content.

Equipments (Devices)

WPS v2.5X | 1116

NOTE!
The PLC300 allows editing at most 512 screens.

The components used to edit the screens are the following:

 Bargraph: Shows the value of a variable graphically;

 Text: Shows the text on the screen;

 Numeric Input: Enters numeric values in a variable;

 Numeric Output: Shows the numeric value of a variable;

 Message: Shows configured texts on a table, selected by means of an index;

 Text Input: Enters variables values in ASCII code;

 Text Output: Shows variable values in ASCII code.

Function Keys

Equipments (Devices)

WPS v2.5X | 1117

The browsing of screens and the manipulation of bits are done by means of the configuration of the function
keys.

The options available to configure the keys are the following:
None: This function key will not execute any actions;
Bit: Selects one of the functions of bit manipulation;
Screen: Selects one key for browsing.

Bit Manipulation

The bit manipulation function allows turning a Boolean variable on, off, inverting its status or turning it off
temporarily.
The options available for selection are the following:

MomentaryOn: Turns on a selected Boolean variable (writes value 1) while the key is pressed. When you
release the key, the marker returns to zero.
Toggle: Inverts the status of the selected Boolean variable;
On: Turns on a selected Boolean variable (writes value 1);
Off: Turns off a selected Boolean variable (writes value 0).

Browsing of the Screens

Equipments (Devices)

WPS v2.5X | 1118

The browsing through the screens is done by means of the edition of the Screen option.
In the example below, screen 2 will be accessed when F1 key is pressed.

Passwords and levels of access

The PLC300 has ten password levels (0 - 9). Level zero (default value) is chosen when you wish free access to
the screen. Except for the zero screen (Home), which always has zero access level, the other screens can be
set with an access level. The password configuration window is opened when the options of the Screen editor
folder are selected.

Equipments (Devices)

WPS v2.5X | 1119

The configured passwords must have six decimal characters.

In order to configure the screen access level, it is necessary to configure this option in the screen options.

Screen options

In the screen options, you can configure the current screen number and the properties of the screen password.
In order to open those options, it is necessary to select the options of the screen file in the resource.

The screen options are the following:
Auto Logoff: When a screen with access level is viewed, if the access level of the screen is higher than the

Equipments (Devices)

WPS v2.5X | 1120

current level, the device access level becomes the same as the current screen level. If the auto logoff option
is enabled, after the access to the screen, the device access level will not change.
Level: Selects the screen access level. The higher the level of access, the greater the privilege. Up to nine
access levels can be programmed to allow different kinds of users accessing certain screens. Zero access
level means that the screen will not require a password in order to be accessed.

Screen edition

The screens are composed of components, such as Bargraph, Numeric Input, Numeric Output, Text, Message
and Text Output. For the setting of the screens, the components are entered in the display by dragging the
components from the pallete to the display or by right clicking the mouse on the display.
The components used to edit the screens are the following:

Bargraph

The Bargraph component shows a bargraph on the display with block-type characters proportional to the value
of the selected variable.

The properties of this component are:

Equipments (Devices)

WPS v2.5X | 1121

Variable: Variable used to display the bargraph.
Maximum: Maximum value shown by the graph. In case the value of the variable is equal to or above the
maximum value, the graph is displayed with the all bars completely filled.
Minimum: Minimum value shown by the graph. In case the value of the variable is equal to or below the
minimum value, the graph will not show any bars filled.

Numeric Input

The Numeric Input component allows the user entering a numeric value within a certain range. The entered
content is stored in a variable.

The properties of this component are:

Equipments (Devices)

WPS v2.5X | 1122

Variable: Variable used to enter data in the display;
Maximum: Maximum value accepted as input for this field. In case the entered value is higher than this
value, the maximum value will be assigned;
Minimum: Minimum value accepted as input for this field. In case the entered value is higher than this
value, the minimum value will be assigned;
Decimal digits: Number of decimal places in the presentation of the variable on the display;
Leading zeros: Fills with zeros the spaces that are empty between the configured component length and
the variable size.

Numeric Output

The Numeric Output component presents the formatted value (decimal places, leading zeros or flashing) of the
variable selected on the display.

 The properties of this component are:

Equipments (Devices)

WPS v2.5X | 1123

Variable: Variable used to present the data on the display;
Decimal digits: Number of decimal places in the presentation of the variable on the display;
Update: Time (in milliseconds) used for the update of the field on the display. This value is only an
approximated value, since is depends on the scan of the device;
Leading zeros: Fills with zeros the spaces that are empty between the configured component length and
the variable size;
Blink: Enables the option of blinking text.

Text

The Text component is used to insert fixed texts in the screen.

The properties of this component are:

Equipments (Devices)

WPS v2.5X | 1124

Text: Text displayed on the screen;
Blink: Enables the option of blinking text.

Message

The Message component shows configured texts on a table, selected by means of an index.

The properties of this component are:

Equipments (Devices)

WPS v2.5X | 1125

Variable: Variable used as index to display the text on the screen;
Update: Time (in milliseconds) used for the update of the field on the display. This value is only an
approximated value, since is depends on the scan of the device;
Table
o Value: Table index;
o Text: Text displayed when the variable value is equivalent to the table index;
o Default text: Text displayed when the variable assumes a value not set in column value. When this

option is disabled the displayed text is the variable value.

Text Output

The Text component displays configurable texts for values of a variable.

Equipments (Devices)

WPS v2.5X | 1126

The properties of this component are:

Variable: STRING type variable containing the text;
Update: Time (in milliseconds) used for the update of the field on the display. This value is only an
approximated value, since is depends on the scan of the device;
Blink: Enables the option of blinking text.

NOTE!
A BYTE variable was used instead of STRING in firmware versions below 2.10. The array size
was defined by the component size.

Text Input

The Text Input component allows the user to enter text;

Equipments (Devices)

WPS v2.5X | 1127

The properties of this component are:

Variable: STRING type variable used as storage for the text entered.

NOTE!
A BYTE variable was used instead of STRING in firmware versions below 2.10. The array size
was defined by the component size.

11.8.7 Event Log

Overview

The event log is a set of variable values that are stored, with date and time, in the SD card of the device in the
csv (comma separated value) format. Those values are recorded after the occurrence of events that may be of
the following types: time, change of state or trigger. For each event log file, the file recording interval is
configured and a Boolean variable, which is responsible for enabling or disabling the log through the program,
is associated to it.

A text may be associated to each log configuration file, which will be presented together with the variables as
soon as the upload of the event log is performed (see Text Field Configuration section).

In the option menu of the event log, it is possible to carry out the following actions:

Equipments (Devices)

WPS v2.5X | 1128

Add a new event log: in order to add a new event log, it is necessary to select the New file option from
the folder Event log. For further information on how to configure the event log, see Event log configuration
section.
Upload SD card files: after the download of the event log files configured for the equipment, it is possible to
upload these files to view the events occurred. For more details, see Upload SD card files section.
Create log file: This functionality allows the user to create a log file within a defined period with the log files
loaded in the project. For more details see Creation of log files section.

Event Log Configuration

In the event log configuration window, you configure: the recording interval of the event log file, the type of event
log, the Boolean variable that enables the event log and the text to be displayed in the event log.

File interval: In the file interval field , the duration time of the recording of the data in a single file is
configured. The options of this field are the following:
o Single: The data will be recorded in a single file.
o Daily: The data will be recorded in a file a day. The recording of a new file begins whenever the day on the

clock of the device changes. The file is recorded with a suffix containing the day, month and year on
which its recording began.

o Monthly: The data will be recorded in a file a month. The recording of a new file begins whenever the

month on the clock of the device changes. The file is recorded with a suffix containing the month and year
in which its recording began.

o Annual: The data will be recorded in a file a year. The recording of a new file begins whenever the year on

the clock of the device changes. The file is recorded with a suffix containing the year in which its recording
began.

Equipments (Devices)

WPS v2.5X | 1129

Event log type

The event log can be of time, change of state and trigger type.

Time

Equipments (Devices)

WPS v2.5X | 1130

The event log is recorded in time intervals defined in the field Period. The value configured in the field Period
must be a whole value greater than zero and smaller than 4294967295 s. The time unit can be selected from
seconds, minutes or hours.

In the field Variables you select the variables that will be sampled in the configured period.

Change of State

The event log is recorded after a change in the value of the selected variable. Only the value of the selected
variable is recorded in the event log.

In the field Variables you select the variables that will be sampled after the change of state.

NOTE!
The list of variables is possible only in firmware versions higher than 3.30. For these versions, the
variable that triggers the event log is not written in the event log, unless the variable is added to
the list.

Equipments (Devices)

WPS v2.5X | 1131

Trigger

As in the Time event, the event log is recorded in time intervals defined in the field Period, but only when the
value of the configured variable in the field Trigger is within the limits selected in the variables of the Upper
limit and Lower limit fields. The value configured in the Period field must be a whole value greater than zero
and smaller than 4294967295 s. The time unit can be selected from seconds, minutes or hours.

In the field Variables you select the variables that will be sampled in the configured period.

Text field configuration

In the Text field, it is possible to add a text to be shown together with the variables. This text will be added as
soon as the event log file is loaded (through the upload of log files) to the WPS.
For the variable values to be inserted in any position of the text, markers will be added to the text which will be
replaced by the variables.
According to the type of event log selected, the markers must be added the following way:

Time: the first variable of the list is represented by the marker {0}, the second by the marker {1} and thus
successively.
Change of State: the only variable selected will be represented by the marker {0}.
Trigger: the Trigger variable is represented by the marker {0}, the Upper limit by the marker {1}, the
Lower limit by the marker {2}, the first variable of the list by the marker {3}, the second by the marker {4}
and thus successively. As an example, below is the configuration of an event log of the Trigger type and its
log file.

Equipments (Devices)

WPS v2.5X | 1132

Equipments (Devices)

WPS v2.5X | 1133

Upload of log files

There are two ways to upload the log files: upload all the project files or upload the files individually.

Equipments (Devices)

WPS v2.5X | 1134

In order to upload all the log files configured in the project, it is necessary to select the folder Event log with
the right button and select the option Upload SD card files.

In order to upload the files associated to only one event log configuration file, it is necessary to click the right
button on the event log configuration file and select the option Upload SD card files.

ATTENTION!
When uploading files, the previous files (with the same name) will be overwritten.

Equipments (Devices)

WPS v2.5X | 1135

Creation of log files

Through the log file creation tool, it is possible to create new event log files using the log files previously loaded
on the project. Thus, it is possible to define the initial and final log interval and which log files must be used. In
order to begin the creation of a new log file, it is necessary to click the right button of the mouse on the folder
Event log and select the option Create log file. The configuration options for the new file are the following:

File name: Name that will be used in the log file created. If the name already exists, the data will be
overwritten.
Initial interval: It determines the initial day and time of the file logs. If the Unlimited option is selected,
there will not be a minimum value for the date.
Final interval: It determines the final day and time of the file logs. If the option Unlimited is selected, there
will not be a maximum value for the date.
Files: It selects the log files that will be used to generate the new log file.

Equipments (Devices)

WPS v2.5X | 1136

11.8.8 Setup

11.8.8.1 Configuration

Overview

The setup configuration of the PLC300 is accessed by double clicking the shortcut available in the resource as
shown in the following figure.

ATTENTION!
When creating a new resource in the WPS, the setup configuration values will be the standard
values of the PLC300. We recommend to review these values according to the requirements of
the application and to send these adjustments according to the following explanation.

The setup configuration window is divided into tabs and has two buttons to access the PLC300 as shown in
the following figure.

The Write Configuration and Read Configuration buttons are only active when the WPS is connected to

the PLC300 through the command Connect Device .

Equipments (Devices)

WPS v2.5X | 1137

Write Configuration: It sends all configurations adjusted in the setup configuration screens to the
equipment.
Read Configuration: It receives all the configurations adjusted in the equipment and configures the
screens according to the received values.

11.8.8.2 Configuration Windows

11.8.8.2.1 Display

Password: It allows to change the password of the setup function of the PLC300. The standard password is
‘0000’. The new password must be a number with four digits.
LCD Contrast: It adjusts the LCD contrast of the PLC300.
Keyboard Beep: It enables the beep of the keys of the PLC300.

11.8.8.2.2 Analog

Analog Inputs: It selects one of the three operation modes of the AI1 analog input of the PLC300: ‘Voltage
0 to 10 V’, ‘Current 0 to 20 mA’ or ‘Current 4 to 20 mA’.

Equipments (Devices)

WPS v2.5X | 1138

NOTE!
In the option 4 to 20 mA, the value that the Ladder sees is a proportional, standardized value,
that is, 4 to 20 mA - 0 to 32767.

Analog Outputs: It selects one of the four operation modes of the analog outputs (AOs) of the IOA
accessories installed in the PLC300, seeing that the AOs 101 and 102 are the AOs 1 and 2 of the IOA card
installed in the slot 1 of the PLC300, and the AOs 201 and 202 are the AOs 1 and 2 of the IOA card
installed in slot 2.

11.8.8.2.3 Encoder

It selects the power supply of the encoder of the PLC300 between 5 or 12V.

11.8.8.2.4 RS232

It is possible to configure the baud rate, parity and number of stop bits of the serial interface of the RS232 of

Equipments (Devices)

WPS v2.5X | 1139

the PLC300.

11.8.8.2.5 RS485

It is possible to configure the baud rate, the parity and the number of stop bits, the mode (master/slave) and
the address of the PLC300 in a Modbus RTU network by means of the serial interface RS485 of the PLC300.

11.8.8.2.6 CAN

It is possible to configure the baud rate and the address of the PLC300 in a CANopen network by means of the
CAN interface of the PLC300.

Equipments (Devices)

WPS v2.5X | 1140

11.8.8.2.7 LAN

It is possible to configure the IP address, subnet mask, default gateway, DHCP, speed and duplex mode of
the PLC300 in an Ethernet network.

IP Address: Four bytes of address that identify the PLC300 in the IP network;
Subnet Mask: Four bytes that identify the subnet to which the PLC300 belong in the IP network;
Gateway: Four address bytes that identify the default gateway to access other subnets in the IP network;
DHCP: Disabled, Enabled;
Speed/Duplex: Auto, 10MBps Full Duplex, 10MBps Half Duplex, 100MBps Full Duplex, 100MBps Half
Duplex.

11.8.8.2.8 Modbus TCP

It is possible to configure the TCP, Unit ID, IP authentication and timeout of the Gateway Modbus TCP/RTU of
the PLC300 in an Ethernet network by using the ModbusTCP protocol.

IP Authentication: Four bytes of the address that identify the single remote IP address that can connect to

Equipments (Devices)

WPS v2.5X | 1141

the PLC300. All the fields in zero disable the IP authentication and any remote address can connect to the
PLC300;
TCP Port: 0 to 65535,
Unit ID: 1 to 255,
Gateway Timeout: 20 to 5000 ms

11.8.8.2.9 Clock Settings

The clock settings are only active when the WPS is connected to the PLC300 through the command Connect
Device.

It allows to set the RTC clock of the PLC300.

11.8.8.2.10 Language

Equipments (Devices)

WPS v2.5X | 1142

Allows to change the configured language in PLC300.

11.8.8.2.11 Watchdog

Allows configuring custom watchdog in the PLC300.

1. Time of Watchdog (ms): waiting time of the watchdog. Minimum value: 200ms.
2. Reset the PLC in case of Watchdog: if checked, this option resets the PLC300 in case of watchdog and

runs the user application again after restart. By checking this option, options 3 and 4 are disabled
automatically;

3. Watchdog Output: allows selecting an output for the exclusive use as a flag from the watchdog.
3.1.The selected output (DO8 or DO9) cannot be written via Ladder. It will remain at a high level after

configured for this option and, in the event of watchdog, it will turn off.
4. Output Status: allows selecting if the digital outputs maintain their status in case of activation of the

watchdog or if they will be turned off.
4.1.This option will have no action on the selected output in option 3. For example: if in option 2 DO9 is

selected, even if in option 3 ‘Keeping the status’ is checked, at the moment of watchdog it will be
switched off.

Compatibility

Device Version

PLC300 2.30 or higher

11.8.9 Communication

11.8.9.1 Online Commands

Overview

The online commands are commands performed when the device is communicating with the application (online
monitoring active).

With the online commands it is possible:

Equipments (Devices)

WPS v2.5X | 1143

To perform the commands for recording and loading the resource, setup and firmware files.
To configure the device number.
To stop and run the program and delete the resource.

Saving and loading configuration

The commands for recording the resource, setup and firmware files make a copy of the device binary files to
the SD card. The loading of the files make the copy of the binary files from the SD card to the device.
For the security of the files, it is possible to configure a protection password. It is also possible to configure
the number of devices so that backup files will be copied to different folders.

Saving and loading command

To perform the commands for recording and loading the resource, setup and firmware, it is necessary to select
the menu Communication > Online commands > choose one of the options listed Save/Load and then
Resource/Setup/Firmware.

If a password has been configured for the resource, a dialog window prompting the password will show. The
password has one to eight decimal digits.

Password configuration

The password configuration for the online commands is done trough the configuration of the resource
properties, in the password option.

Equipments (Devices)

WPS v2.5X | 1144

After entering the password (with one to eight decimal digits), it is necessary to build the resource and send it
to the device. The password will be stored on the equipment and, when one of the online commands is
performed, the password is requested. The password will not be requested again until that the online
monitoring is completed.

Device number

The device number is configured to record the backup of different devices on the same SD card. When
selecting the functions for recording resource, setup or firmware, the files will be recorded on the following
folders, according to the device number (1 in the example).

\PLC300\0001\Resource
\PLC300\0001\Setup
\PLC300\0001\Firmware

ATTENTION!
Existing files in the destination folder will be overwritten when you perform recording functions.

Equipments (Devices)

WPS v2.5X | 1145

Run program

It runs the user’s program.
In order to perform the run program command, it is necessary to select the menu Communication > Online
commands > Run program.

Stop program

Stop the user’s program.
In order to perform the stop program command, it is necessary to select the menu Communication > Online
commands > Stop program.

Erase resource

It erases the resource recorded on the device.
In order to perform the delete program command, it is necessary to select the menu Communication >
Online commands > Delete program.

11.8.9.2 Force I/O

Overview

The force inputs and outputs window is used for the values of the digital and analog inputs to be read by the
program, by values manipulated by the user, regardless their physical state. It also allows the manipulation of
the physical states of the digital and analog outputs by the user independently of the values calculated by the
program.
In order to force the device inputs and outputs, it is necessary that the online monitoring be active and the
option Run cyclically be enabled. The data are sent to the device every 2 seconds.
The values can be edited with the device disconnected. The configurations are stored in the resources and
recorded whenever the main resource selection is changed.
The data displayed on the force I/O window contain the values belonging to the resource (and configuration)
selected as main.

The force I/O window is open trough the menu Online > Force I/O:

Equipments (Devices)

WPS v2.5X | 1146

Toolbar

The toolbar of the force window has the options to run cyclically, upload the device force configuration, enable
all and disable all:

 Run cyclically: Sends the user's configurations to the device and updates the state of the inputs and
outputs in a cyclic way.

 Upload configuration: Allows the current configuration of the device to be read. For this option to be
enabled, it is necessary that the online monitoring be active and the option run cyclically be disabled.

 Enable all: Enables the force I/O of all of the inputs and outputs of the device.

 Disable all: Disables the force I/O of all of the inputs and outputs of the device.

Input and Output commands

For each digital and analog input and output there is a selection box linked to enable the force, a status field
and an edition field.

Digital:

1. Number of the digital inputs/output
2. Enable/disable Force I/O

Equipments (Devices)

WPS v2.5X | 1147

3. Current status of the I/O: It has three statuses: 1. light green LED: activated; 2. dark green LED:
deactivated; 3. gray LED: the value is not being read.

4. Enable/disable the input/output

Analog:

1. Number of the analog input/output
2. Enable/disable Force I/O
3. Current value of the input/output
4. Value of the input/output configured by the user

NOTE!
The analog signal scale has 15 bits plus 1 bit for signal, except for SSW900 which it has only 10
unsigned bits.

11.8.9.3 Download

Overview

The resource download downloads the memory area configuration files, volatile data, retentive data, programs,
screens, alarms, source code (optionally) and recipes (optionally) to the device internal memory.

Equipments (Devices)

WPS v2.5X | 1148

Figure 1: Resource download window

It is also possible to perform the following operations during the download of the resource:

Initialize variables: Initializes the variables with the values configured in the initial values.
Clean alarm history: Excludes alarm history data stored. It is recommended to clean this area whenever
the memory areas or the alarm configuration are changed.
Source code download: Downloads the resource source code.
Download recipe in internal memory: Downloads the file containing the recipe data configured with the
storage option in the RAM.
Disable CANopen master during download: Disables the CANopen master during the download:
Stop/Run the program automatically: Disables the warning windows informing that the program will be
stopped (Figure 2) and the prompting window asking if you wish to execute the program (Figure 3).
Setup configuration: Performs setup configuration data download.
CANopen configuration: Performs CANopen network configuration download.

Equipments (Devices)

WPS v2.5X | 1149

Figure 2: Warning window informing that the program will be stopped

Figure 3: Prompting window asking if you wish to run the

program

Download of the SD card files

If the user configured one or more recipes with the option of storage in the SD card, the confirmation window of
download of files in the SD card will show (Figure 4). For the window to show, it is necessary that the SD card
be connected to the equipment.

Equipments (Devices)

WPS v2.5X | 1150

Figure 4: Confirmation window of download in the

SD card

11.8.9.4 Hot Download

11.8.9.4.1 Overview

The Hot Download is a functionality that allows the loading of logic changes and configurations of a resource in
a equipment without having to stop the routine of execution. The variables actual values are retained.

On the Hot Download, the logic changes and configurations must be realized off-line, in other words, with the
monitoring disabled, being transfer to the equipment in one single step. This requires that every and any
modification realized needs to be sent to the equipment through a command realized by the user itself,
avoiding then that incomplete changes can cause a different operation than expected.

ATTENTION!
Take care during Hot Download realization: mistakes can result in damage to the people involved
and to the equipment. Before realizing Hot Download, evaluate the consequences of your
changes and notify the involved.

Compatibility

Equipment Version

PLC300 2.30 or superior

11.8.9.4.2 Enable/Disable Hot Download

The Hot Download feature comes disabled on the resource by default, to enable it just follow the steps below:

1. Open the context menu of the resource and select the option Resource Options.

Equipments (Devices)

WPS v2.5X | 1151

2. Select the option Hot Download on the sidebar menu, it will open a window with the Hot Download
configurations.

Equipments (Devices)

WPS v2.5X | 1152

3. On the Hot Download configuration window just select the option Enable Hot Download Features and
confirm.

Equipments (Devices)

WPS v2.5X | 1153

4. The option Force Hot Download is used when it's wished that the system re-enables the Hot Download to
the resource, after the user having realized one operation that disables it.

Example: The user create a local variable after the system having informed him that the creation of the same
will disable Hot Download, in case the user regrets and excludes this variable he can then use the option
Force Hot Download so the system will keep allowing Hot Download in the same way it was allowing before
the creation of this variable.

11.8.9.4.3 Restrictions

For being possible to realize the Hot Download on the equipment, it's necessary that after the full resource
download, some restrictions don't be violated.

Restrictions are limitations imposed to the operations that the user can execute in a resource, because such
operations unfeasible the Hot Download routine.

The list below provides the restrictions to the user:

Memory areas
o Any memory area can't be changed;

Programs
o Can't be removed;
o Can't be added to the execution list of tasks;

Tasks
o Can't be edited;

Equipments (Devices)

WPS v2.5X | 1154

o Can't be removed;
o Can't have their execution list changed. Also the execution order of the programs can't be changed.

Variables
o Variables with LOCAL scope can't be created, excluded or edited.
o Variables with GLOBAL scope without address and from the group GLOBAL_RETAIN without address

can't be created, excluded or edited.
o Variables with GLOBAL scope with address and CONSTANT can be created, excluded or edited.
o Variables from USERFB from types VAR_IN, VAR_OUT, VAR_IN_OUT, LOCAL, LOCAL_RETAIN can't

be created, excluded or edited.
USERFB's
o Can't be added and removed from programs.

Structures
o Can't be edited or removed.

Recipes
o Can't be transferred to the equipment.

Screens
o No restrictions.
o During the loading of the changes to the equipment will be displayed a screen indicating this operation. In

cases where the current screen changes, will be called the HOME screen.
Alarm
o No restrictions.
o Case any alarm stored in the alarm history be removed, the alarm history become than invalid.

Event Log
o No restrictions.

Case any restrictions be violated, a alert message will be displayed.

Figure 1 - Alert on the edition screen

Equipments (Devices)

WPS v2.5X | 1155

Figure 2 - Alert on the dialog box

NOTE!
The alerts displayed during the edition aren't guaranty that the Hot Download will be disabled
when the user call it. Those alerts serve only as a parameter in order that the user have the
consciousness that the change he is realizing will disable the Hot Download in case that its don´t
be reverted.

11.8.9.4.4 Operation

The Hot Donwload function is enabled when:
1. A complete download of the compiled resource has been done previously;
2. Have sufficient resource memory space.

After compiling, the output window indicates a warning (W4002) if the Hot Download function is disabled due to
lack of memory.

Figure 1 - Warnings of insufficient memory for Hot Download displayed on the compilation window

After realizing the desired changes on the resource, the beginning of the download routine will verify if the
resource edited is the same as the resource executing on the equipment.
Case both be equal, is then displayed a dialog window for selection between Full Download or Hot Download.

Equipments (Devices)

WPS v2.5X | 1156

Figura 2 - Dialog window to choose

between Full Download and Hot

Download

Case the option Hot Download be selected, then is realized a verification to know if any restriction has been
violated. Case it was, a message of error will be displayed informing the cause.
Validated the verification, is then realized a comparison of the memory areas, the files that were changed are
displayed in red.

NOTE!
The variables map is presented on the gray color, since its download is obligatory in case of
changes.

Figure 3 - Files selection window for Hot Download

Case any file be sent to the equipment without the source code, this will become invalid, thus disabling your

Equipments (Devices)

WPS v2.5X | 1157

upload.
This procedure is realized because the source code don't represent anymore the files presented in the
memory areas.

NOTE!
The source code becomes invalid even that it be equal to the previously saved on the equipment.

11.8.9.5 Upload

Overview

Uploads the resource source code. For this, it is necessary that the source code be previously recorded
(during the download) in device memory. In order to initialize the upload, it is necessary to access the menu
Communication > Upload resource.

If the upload was performed successfully, the window to select the configuration name will open.

Equipments (Devices)

WPS v2.5X | 1158

If a password to protect the source code was configured, it will be requested:

11.8.9.6 Comparison of resource and device

Overview

NOTE!
The comparison of resource and device works only as from firmware version 1.50.

The comparison of resource and device (binary files) allows the user compare the main resource of the
application with the resource that is running on the device. To begin the comparison, it is necessary to access
the menu Communication > Compare resource device.

Equipments (Devices)

WPS v2.5X | 1159

After selected the comparison option, it is checked whether the resource is compiled to read the information of
size and CRC of the binary files. Then, the comparison of all memory areas is performed.

If the memory areas have changed, cannot be possible to perform the comparison and a file system
comparison error is shown:

Equipments (Devices)

WPS v2.5X | 1160

Observations:
- The information and source code files are updated every build.
- The volatile, retain, source code and recipe are download options. If the download of these files were not
done, the comparison will be flagged as false.

11.8.9.7 Modbus File Manager

Overview

The modbus file manager of the PLC300 is accessed through the communication menu as shown in the
following figure.

The window of the modbus file manager is composed of the following parts as shown in the following figure.

1. Toolbar with all the tools of the file manager.

Equipments (Devices)

WPS v2.5X | 1161

2. Folder list of the SD Card.
3. File list of the selected folder.

It is only possible to view the files and folders of the SD Card when the WPS is connected to the PLC300

through the command Connect Device .

Toolbar

 Creates a new folder

 Erases the selected folder

 Renames the selected folder

 Erases the selected file

 Displays the properties of the selected file (path, size and date)

 Renames the selected file

 Sends the file to the PLC300

 Receives the selected file from the PLC300

Popup menu

In order to access the popup menu, just click the right button on a folder or on a file and it will be displayed as
shown in the following figure.

Popup menu for folders:

Equipments (Devices)

WPS v2.5X | 1162

Popup menu for files:

11.8.9.8 Communication RS232

Overview

In a serial interface, the data bits are sent in sequence through a communication channel or link. Several
technologies use the serial communication for data transfer, including interfaces RS232.

Equipments (Devices)

WPS v2.5X | 1163

Configuration

Some parameters need to be configured to perform the RS232 communication; to do so, check the item
RS232.

There are three operating modes of the RS232 communication.
Mode 0: Modbus Slave;
Mode 2: ASCII Protocol;
Mode 4: Generic telegrams.

NOTE!
Modes 1 and 3 are reserved.

Mode 0: Modbus Slave

Refer to manual PLC300 - Modbus RTU Communication, available at http://www.weg.net/br.

Mode 2: ASCII Protocol

The ASCII protocol, via RS232, was developed for bar code reading.

Involved Variables:

RS232_MODE: BYTE system marker which defines the operating mode of the RS232:
o 2: ASCII protocol;

RS232_RX_CLEAR: BIT marker; clears the data buffer (RS232_ ASCII_ BYTEBUFFER) and the
RS232_RX_FINISHED flag;
RS232_RX_FINISHED: BIT marker; indicates that a data package is available in the
RS232_ASCII_BYTEBUFFER buffer;
RS232_ASCII_BYTEBUFFER: 256-byte buffer which stores the received characters;
RS232_ASCII_STRING: STRING buffer, which can be shown on the screen of the PLC300 by the ‘Text
Output’ component.

How to use the RS232 in the ASCII mode:

1. Select the ASCII protocol by setting: RS232_MODE = 2 in the Ladder;
2. Give a pulse in the RS232_RX_CLEAR marker to clear the RS232_ASCII_ BYTEBUFFER buffer, and the

RS232_RX_FINISHED flag;
3. When receiving a package, the flag: RS232_RX_FINISHED goes to TRUE;
4. The data are available for the Ladder by means of the array: RS232_ASCII_BYTEBUFFER, of 256 bytes;
5. To use with the ‘Text Output’ function of the HMI, use the RS232_ASCII_STRING STRING marker.

NOTE!
Even without turning on RS232_RX_CLEAR, the system can receive another reading, placing the
data over the previous reading.

http://www.weg.net/br

Equipments (Devices)

WPS v2.5X | 1164

NOTE!
The end of the package is executed when the CR/LF characters (0x0d/0x0a) are received.

NOTE!
The CR/LF characters are not stored in the buffer.

NOTE!
The buffer is terminated with NULL character (0x00).

The configuration of the RS232 must be done according to the default configuration of the PLC300;
On the screens, the 'Text Output' component, which only accepts the STRING type, was added to show
RS232_ASCII_STRING, which is the string that shows the value read by the protocol, limited to 20 characters
(limit of the output function = 1 line).

Mode 4: Generic telegrams

Functionality developed to send and receive telegrams by means of serial communication RS232.

Involved command variables:

RS232_MODE: BYTE marker; defines the operating mode of the RS232:
o 4: telegrams via RS232.

RS232_TIMEOUT: WORD marker; indicates the maximum waiting time (in ms) for a response, preventing
new telegrams to be sent before this time has elapsed.
RS232_END_CHARACTER: defines a character that can end a telegram, for example, ETX (03H). Upon the
receipt of this character, the PLC300 considers that the bytes received up to it are the ones necessary; the
others are ignored.
RS232_ENABLE_END_CHARACTER: BIT marker; system marker that enables the use of telegram end
character specified in RS232_END_CHARACTER;
o 0: disabled;
o 1: enabled.

RS232_START_TX: BIT marker; the telegram is sent on the leading edge of this marker;
RS232_TX_ADDRESS: WORD marker; indicates the initial address of the data to be transferred;
RS232_TX_LENGTH: BYTE marker; indicates the number of bytes of the information to be sent;
RS232_RX_ADDRESS: WORD marker; indicates the initial address of the received data;
RS232_MAX_RX_BUFFER_LENGTH: BYTE marker; indicates the maximum number of bytes that can be
received;

Involved status variables:

RS232_TX_TELEGRAM_COUNTER: WORD marker; counts the number of sent telegrams;
RS232_RX_TELEGRAM_FINISHED: BIT marker; indicates that a data package is available in the memory
from the address indicated in RS232_RX_ADDRESS.
RS232_TX_FINISHED: BIT marker; indicates that a data package was completely sent.
RS232_TIMEOUT_INDICATOR: BIT marker; indicates if the time specified in RS232_TIMEOUT has elapsed.
o 0: there was no overflow;
o 1: there was time overflow.

RS232_RX_TELEGRAM_COUNTER (status): WORD marker; counts the number of received telegrams;
RS232_RX_BYTE_COUNTER (status): WORD marker; counts the number of received bytes;

Equipments (Devices)

WPS v2.5X | 1165

How to use the RS232 to send and receive telegrams:

1. Select Send and receive telegrams via RS232 by setting RS232_MODE = 4 in the Ladder;
2. Configure the initial address of the telegrams to be sent and received in, respectively,

RS232_TX_ADDRESS and RS232_RX_ADDRESS;
3. Specify the size (in bytes) of the telegram to be sent by means of marker RS232_TX_LENGTH;
4. Specify the maximum size (in bytes) of the telegram that can be received by means of RS232_RX_LENGTH

marker;
5. Specify the timeout in RS232_TIMEOUT;
6. If applicable, configure the telegram end characters of the markers respectively in: RS232_ENABLE

END_CHARACTER and RS232_END_CHARACTER;
7. Reset the RS232_RX_TELEGRAM_FINISHED flag to be ready to receive a telegram;
8. Give a pulse in RS232_START_TX to send a telegram.

NOTE!
It will be considered the end of receipt of telegram, the receipt of the special character when
configured in RS232_END_CHARACTER with the RS232_ENABLE_END_CHARACTER flag
enabled or, also, when the timeout is equal to twice the transmission time of a byte.

Compatibility

Device Version

PLC300

Mode 0: 1.00 or higher

Mode 2: 1.11 or higher

Mode 4: 1.50 or higher

11.8.9.9 Communication RS485

Overview

In a serial interface, the data bits are sent in sequence through a communication channel or link. Several
technologies use the serial communication for data transfer, including interfaces RS485.

Configuration

Some parameters need to be configured to perform the RS485 communication; to do so, check the item
RS485.

There are three operating modes of the RS485 communication.
Mode 0: Modbus Slave;
Mode 1: Modbus Master;
Mode 4: Generic telegrams.

NOTE!
Modes 2 and 3 are reserved.

Equipments (Devices)

WPS v2.5X | 1166

Mode 0: Modbus Slave

Refer to manual PLC300 - Modbus RTU Communication, available at http://www.weg.net/br.

Mode 1: Modbus Master

Refer to manual PLC300 - Modbus RTU Communication, available at http://www.weg.net/br.

Mode 4: Generic telegrams

Functionality developed to send and receive telegrams by means of serial communication RS485.

Involved command variables:

RS485_MODE: BYTE marker; defines the operating mode of the RS485:
o 4: telegrams via RS485.

RS485_TIMEOUT: WORD marker; indicates the maximum waiting time (in ms) for a response, preventing
new telegrams to be sent before this time has elapsed.
RS485_END_CHARACTER: defines a character that can end a telegram, for example, ETX (03H). Upon the
receipt of this character, the PLC300 considers that the bytes received up to it are the ones necessary; the
others are ignored.
RS485_ENABLE_END_CHARACTER: BIT marker; system marker that enables the use of telegram end
character specified in RS485_END_CHARACTER;
o 0: disabled;
o 1: enabled.

RS485_START_TX: BIT marker; the telegram is sent on the leading edge of this marker;
RS485_TX_ADDRESS: WORD marker; indicates the initial address of the data to be transferred;
RS485_TX_LENGTH: BYTE marker; indicates the number of bytes of the information to be sent;
RS485_RX_ADDRESS: WORD marker; indicates the initial address of the received data;
RS485_MAX_RX_BUFFER_LENGTH: BYTE marker; indicates the maximum number of bytes that can be
received;

Involved status variables:

RS485_TX_TELEGRAM_COUNTER: WORD marker; counts the number of sent telegrams;
RS485_RX_TELEGRAM_FINISHED: BIT marker; indicates that a data package is available in the memory
from the address indicated in RS485_RX_ADDRESS.
RS485_TX_FINISHED: BIT marker; indicates that a data package was completely sent.
RS485_TIMEOUT_INDICATOR: BIT marker; indicates if the time specified in RS485_TIMEOUT has elapsed.
o 0: there was no overflow;
o 1: there was time overflow.

RS485_RX_TELEGRAM_COUNTER (status): WORD marker; counts the number of received telegrams;
RS485_RX_BYTE_COUNTER (status): WORD marker; counts the number of received bytes;

How to use the RS485 to send and receive telegrams:

1. Select Send and receive telegrams via RS485 by setting RS485_MODE = 4 in the Ladder;
2. Configure the initial address of the telegrams to be sent and received in, respectively,

RS485_TX_ADDRESS and RS485_RX_ADDRESS;
3. Specify the size (in bytes) of the telegram to be sent by means of marker RS485_TX_LENGTH;
4. Specify the maximum size (in bytes) of the telegram that can be received by means of RS485_RX_LENGTH

http://www.weg.net/br
http://www.weg.net/br

Equipments (Devices)

WPS v2.5X | 1167

marker;
5. Specify the timeout in RS485_TIMEOUT;
6. If applicable, configure the telegram end characters of the markers respectively in: RS485_ENABLE

END_CHARACTER and RS485_END_CHARACTER;
7. Reset the RS485_RX_TELEGRAM_FINISHED flag to be ready to receive a telegram;
8. Give a pulse in RS485_START_TX to send a telegram.

NOTE!
It will be considered the end of receipt of telegram, the receipt of the special character when
configured in RS485_END_CHARACTER with the RS485_ENABLE_END_CHARACTER flag
enabled or, also, when the timeout is equal to twice the transmission time of a byte.

Compatibility

Device Version

PLC300

Mode 0: 1.00 or higher

Mode 1: 1.00 or higher

Mode 4: 1.50 or higher

11.9 PSRW

11.9.1 Description

PSRW is a configurable safety relay which can be configured using the WPS graphic interface, it has 4 (four)
double channel safety inputs and 2 (two) OSSDs (Safety double channel safety outputs).

PSRW is capable of monitoring the following safety sensors and components:

Safety Light curtain;
Two hands control;
Emergency stops;
Magnetic sensors;
Mechanical switches;
Safety sensors.

Refer to the user's manual of the PSRW for further details about the product.

11.10SCA06

11.10.1Description

The SCA06 servo drive is a high-performance product which allows controlling the speed, torque and position
of three-phase, alternate-current servomotors. The main characteristic of this product is the high performance
and high precision of movement control of the servomotor due to the operation in closed loop by means of the
position feedback given by a sensor inside the servomotor.

The SCA06 features independent control supply and power supply, allowing, for instance, that the product
communication networks keep on working normally even if the power circuit must be turned off for some

Equipments (Devices)

WPS v2.5X | 1168

reason.

The use of braking resistors provides greatly reduced braking times, optimizing the processes that require high
performance. Several special functions are available, such as programming in Ladder with positioning blocks
which provides extreme flexibility and integration to the drive.

The SCA06 can be used in different applications with many options of cables, both for simple applications and
complex applications like handling, environments with oil, etc.

NOTE!

SCA06 versions below V2.00 do not have the Ladder tool available in WPS.
You can use the WLP application if this feature is required.

11.10.2System Markers

The following variables contained in the GLOBAL_SYSTEM group of the variables table, have the fixed tag.
The tag of system markers were divided into groups and subgroups, where:

Groups:
SCA: reading and writing variables of the SCA06 servo drive;
CO: reading and writing variables of the CANopen network.

Subgroups:
STS: reading variable (status);
CMD: writing variable (command).

Reading System Markers (Status)

Address Bit Modbus Tag Description

Ladder

%SB6000 0 0 FREQ_2HZ Oscillator w ith frequency of 2 Hz

%SB6000 1 1 PULSE_1SCAN Pulse during the f irst scan cycle

%SB6000 2 2 FALSE Alw ays in 0

%SB6000 3 3 TRUE Alw ays in 1

%SW6002 -- 3001 ELAPSED_SCAN_CYCLES Elapsed scan cycles

Real Axis

%SW6004 -- 3002 SCA_STS_REAL_AXIS_STATUS Real axis status (see note)

%SD6008 -- 3004 SCA_STS_REAL_AXIS_VELOCITY Real axis velocity

%SL6024 -- 3012 SCA_STS_REAL_AXIS_POSITION Real axis position

Virtual Axis

Equipments (Devices)

WPS v2.5X | 1169

%SW6006 -- 3003 SCA_STS_VIRTUAL_AXIS_STATUS Virtual axis status (see note)

%SD6012 -- 3006 SCA_STS_VIRTUAL_AXIS_VELOCITY Virtual axis velocity

%SL6032 -- 3016 SCA_STS_VIRTUAL_AXIS_POSITION Virtual axis position

Current

%SD6016 -- 3008 SCA_STS_MOTOR_CURRENT Motor current

Position in the DÍ s transition

%SD6040 -- 3020 SCA_STS_DI1_POSITION_STORED Position stored in the DI1 transition

%SD6048 -- 3024 SCA_STS_DI2_POSITION_STORED Position stored in the DI2 transition

%SD6056 -- 3028 SCA_STS_DI3_POSITION_STORED Position stored in the DI3 transition

Counters

%SD6064 -- 3032 SCA_STS_BUILT_IN_COUNTER Built-in counter value

%SD6068 -- 3034 SCA_STS_BUILT_IN_COUNTER_DI3 Built-in counter stored in the DI3 transition

%SD6072 -- 3036 SCA_STS_ENC1_COUNTER Encoder 1 counter value

%SD6076 -- 3038 SCA_STS_ENC2_COUNTER Encoder 2 counter value

%SD6080 -- 3040 SCA_STS_ENC_COUNTER_Z1
Encoder counter stored in the Z1 transition as defined in

P00511

%SD6084 -- 3042 SCA_STS_ENC_COUNTER_Z2
Encoder counter stored in the Z2 transition as defined in

P00521

CANopen

%SB6100 0 800 CO_STS_MASTER_CONTACTED The CANopen master contacted all the slaves

%SB6100 1 801 CO_STS_MASTER_CONFIG_OK
The CANopen master dow nloaded the configurations of

the slaves

%SB6100 2 802 CO_STS_MASTER_ERROR_CTRL_OK
Error control protocol (node guarding/heartbeat) initiated

w ith the slaves

%SB6100 3 803 CO_STS_MASTER_INIT_FINISHED The CANopen master initialized all the slaves

%SB6100 4 804 CO_STS_MASTER_INIT_ERROR A slave presented an initialization error

%SB6100 5 805 CO_STS_MASTER_ERROR_CTRL
The CANopen master detected a fault in a slave through

the error detection protocol

%SB6100 6 806 CO_STS_MASTER_EMCY A slave reported EMCY

%SB6101 0 808 CO_STS_MASTER_NMT_TOGGLE NMT command toggle bit feedback

%SB6101 5 813 CO_STS_MASTER_BUS_OFF The CANopen master is in bus off

%SB6101 6 814 CO_STS_MASTER_POWER_OFF
The CANopen master has no pow er supply at the CAN

interface

%SB6101 7 815 CO_STS_MASTER_COMM_DISABLED Disabled CANopen master communication

%SB6102 0 816 CO_STS_SLAVE1_CONTACTED
The CANopen master successfully contacted the slave in

the indicated address

%SB6102 1 817 CO_STS_SLAVE1_CONFIG_OK The CANopen master successfully configured the slave

%SB6102 2 818 CO_STS_SLAVE1_ERROR_CTRL_OK
Error control protocol (node guarding/heartbeat) initiated

w ith the slave

Equipments (Devices)

WPS v2.5X | 1170

%SB6102 3 819 CO_STS_SLAVE1_INIT_FINISHED Concluded slave initialization

%SB6102 4 820 CO_STS_SLAVE1_INIT_ERROR Initialization error in the indicated address slave

%SB6102 5 821 CO_STS_SLAVE1_ERROR_CTRL_FAIL
Fault detected in some slave from the CANopen master

error detection protocol

%SB6102 6 822 CO_STS_SLAVE1_EMCY The slave in the indicated address reported EMCY error

%SB6104 0 832 CO_STS_SLAVE2_CONTACTED
The CANopen master successfully contacted the slave in

the indicated address

%SB6104 1 833 CO_STS_SLAVE2_CONFIG_OK The CANopen master successfully configured the slave

%SB6104 2 834 CO_STS_SLAVE2_ERROR_CTRL_OK
Error control protocol (node guarding/heartbeat) initiated

w ith the slave

%SB6104 3 835 CO_STS_SLAVE2_INIT_FINISHED Concluded slave initialization

%SB6104 4 836 CO_STS_SLAVE2_INIT_ERROR Initialization error in the indicated address slave

%SB6104 5 837 CO_STS_SLAVE2_ERROR_CTRL_FAIL
Fault detected in some slave from the CANopen master

error detection protocol

%SB6104 6 838 CO_STS_SLAVE2_EMCY The slave in the indicated address reported EMCY error

...

%SB6354 0 2832 CO_STS_SLAVE127_CONTACTED
The CANopen master successfully contacted the slave in

the indicated address

%SB6354 1 2833 CO_STS_SLAVE127_CONFIG_OK The CANopen master successfully configured the slave

%SB6354 2 2834 CO_STS_SLAVE127_ERROR_CTRL_OK
Error control protocol (node guarding/heartbeat) initiated

w ith the slave

%SB6354 3 8235 CO_STS_SLAVE127_INIT_FINISHED Concluded slave initialization

%SB6354 4 2836 CO_STS_SLAVE127_INIT_ERROR Initialization error in the indicated address slave

%SB6354 5 2837 CO_STS_SLAVE127_ERROR_CTRL_FAIL
Fault detected in some slave from the CANopen master

error detection protocol

%SB6354 6 2838 CO_STS_SLAVE127_EMCY The slave in the indicated address reported EMCY error

%SW6360 -- 3180 CO_SDO_ERROR_NODE_ID
SDO error: address of the slave w ith the last detected

SDO error

%SW6362 -- 3181 CO_SDO_ERROR_OBJECT_INDEX SDO error: object index

%SW6364 -- 3182 CO_SDO_ERROR_OBJECT_SUBINDEX SDO error: object sub-index

%SW6366 -- 3183 CO_SDO_ERROR_FUNCTION SDO error: function (w riting/reading)

%SD6368 -- 3184 CO_SDO_ERROR_VALUE SDO error: value

%SD6372 -- 3186 CO_SDO_ERROR_CODE SDO error: error code

%SB6380 -- 3190 CO_EMCY_SLAVE_ID Last reported EMCY: slave address

%SB6382 -- 3191 CO_EMCY_DATA Last reported EMCY: object data

Writing / Reading System Markers (Command)

Equipments (Devices)

WPS v2.5X | 1171

Address Bit Modbus Tag Description

CANopen

%CB6000 -- 3000 CO_CMD_NMT_COMMAND
NMT command transmission by the CANopen master:

command code

%CB6001 0 8 CO_CMD_NMT_TOGGLE NMT command transmission by the CANopen master: toggle bit

%CB6001 7 15 CO_CMD_DISABLE Disables the CANopen communication

%CB6002 -- 3001 CO_CMD_NMT_SLAVE_ADDR
NMT command transmission by the CANopen master: slave

address

NOTE!
Below description of the real axis and virtual status:

0. Disabled.
1. Errorstop.
2. Standstill.
3. Stopping.
4. Homing.
5. Continuous Motion.
6. Discrete Motion.
7. Synchronized Motion.

Equipments (Devices)

WPS v2.5X | 1172

Note 1: When the drive is in "Stopping" on "Errorstop" every block can be called, but only MC_Reset block is
executed;
Note 2: Attempt to enable the drive, but the drive is in fault;
Note 3: Enabling the drive and the drive is not in fault;
Note 4: MC_Stop.Done is true and MC_Stop.Execute is false;
Note 5: MC_StepDirect, MC_StepRefPulse or MC_FinishHoming.

11.10.3Oriented Start-Up

The function Oriented Start-Up is utilized to realize the minimal required configuration to put SCA-06 into
operation.

Equipments (Devices)

WPS v2.5X | 1173

The Oriented Start-Up can be executed during the resource creation, or throught the context menu off the
resource by selecting the option Oriented Start-Up.

1. On the Start-Up screen the main options that require configuration are the parameters P385 (Servomotor
Model) and P202 (Operation Mode).

Equipments (Devices)

WPS v2.5X | 1174

2. According to the operation mode selected the configurator will be adjusted enabling or disabling other
options, below is a example of the options enabled when the operation mode is 5 - CANopen.

3. After the definition of the operation mode and other options, is only necessary to click on Execute Start-Up
, if it is executed properly a message informing success will be displayed otherwise a message informing

Equipments (Devices)

WPS v2.5X | 1175

fail will be displayed.

4. After the successfull execution of the Start-Up during the resource creation, the system will enable a step

Equipments (Devices)

WPS v2.5X | 1176

named Auto-Tuning in the wizard, this step is up to the user to perform or not.

11.10.4Auto-Tuning

The function Auto-Tuning is utilized to realize automatic adjusts on SCA-06 to obtain a better performance of
the equipment.

The Auto-Tuning can be executed during the resource creation, or throught the resource context menu by
selecting the option Auto-Tuning.

Equipments (Devices)

WPS v2.5X | 1177

1. On the Auto-Tuning screen the options that require configuration are P582 (Rotation Direction) and if the
user program should be stopped before execution and started again after the Auto-Tuning conclusion.

Equipments (Devices)

WPS v2.5X | 1178

2. After choosing the options is only necessary to click on Execute Auto-Tuning to start the process that
takes less than a minute. if it is executed properly a message informing success will be displayed
otherwise a message informing fail will be displayed.

11.10.5Import from WLP

The function import from WLP is utilized to import Ladder developed on WLP software to equipment (device).

The import from WLP can be executed during the resource creation.

Equipments (Devices)

WPS v2.5X | 1179

1. To execute the import WLP function click the Import from WLP button and select the WLP project folder or
the WLP BKP file.

Equipments (Devices)

WPS v2.5X | 1180

Equipments (Devices)

WPS v2.5X | 1181

2. After import from WLP completed successfully click the Finish button to copy the imported files to new
resource.

11.10.6Parameters

11.10.6.1 Overview

The parameter configuration screen is used to configure and monitor all the parameters of the equipment,
including the user parameters.

NOTE!
The reading and writing of such parameters is done on this screen; only the user parameter
configuration must be sent the first time or whenever modified by means of the resource
download routine.

Below is an overview of the parameter configuration screen.

Equipments (Devices)

WPS v2.5X | 1182

1. Parameter files. In this part are all the parameter configuration files created by the user. Notice that when
the file features a person figure on the table, it means this parameter table contains hidden parameters/
group of parameters.

2. Group of parameters. This tree shows all the group of parameters. Notice that the same parameter can be
in more than one group, and when its value is modified, it will be modified in all the groups to which it
belongs.

3. Modified group of parameters. Group of parameters which contain the figure of a person on the table
means they have hidden parameters.

4. Commands. The commands are described below in the order they appear:
4.1.Unhide parameter: In case some parameter has been hidden, this button allows making it visible

again.
4.2.Hide parameter: Just select one or more parameters on the table and trigger this command to hide

them.
4.3.Save table: It saves the values of the parameters shown on the equipment screen; the sent values are

the ones in the User column. The flow is User -> Monitored (equipment)
4.4.Read table: It reads the parameters of the equipment shown in the Monitored column and saves them

in the parameter file in the User column. The flow is Monitored (equipment) -> User
4.5.User parameters: It opens a screen to edit the user parameters.
4.6.Filter: It opens a parameter filter option, and it can filter by parameter number or description.
4.7.User Parameters and Monitored Parameters. These two columns show the off-line and on-line

parameters, so to speak. The User column shows the values contained in the file located on the
computer and the Monitored column shows the values that are effectively saved on the equipment.
Whenever you use the Save Parameter option, the sent values will be from the User column to the
Monitored column, that is, File -> Equipment. In case of reading, the flow is the opposite, from the
Monitored column to the User column, that is, Equipment -> File. In case you wish to change the
values directly on the equipment without changing it in the file, just click on the monitored column,

Equipments (Devices)

WPS v2.5X | 1183

change the values and the modification will occur on-line.
5. Modified parameters: Whenever a parameter value in the User column is different from the Monitored

column, it will be shown in red.
6. Output. This screen shows error information in case they occur during the writing or reading of the

parameters.

11.10.6.2 Configuration

Below is the list of the required steps to create a parameter file.

1. Create a new parameter file.

2. Define a name for the parameter file

3. Configure which parameters you wish to view in your parameter table

Equipments (Devices)

WPS v2.5X | 1184

4. After performing the steps above, the parameter file will be created and the equipment can be
parameterized.

Equipments (Devices)

WPS v2.5X | 1185

11.10.6.3 Read and Write of Parameters

There are 3 (three) ways to do the reading and writing of the parameters: by means of table, selection and
group.

1. Table writing. The table writing command will send all visible parameters on the equipment screen. If and
error occurs during the sending of some specific parameter, a message will be shown on the output window
informing the error. It is important to notice that only visible parameters will be sent; therefore, it is necessary
attention to which node of the group of parameters tree you are viewing. Example: If you wish to write all of
them without filtering per group, just select the tree root.

Equipments (Devices)

WPS v2.5X | 1186

2. Table reading. The table reading command will read all the parameters of the equipment. If a error occurs
during the reading of some specific parameter, a message will be shown on the output window informing the
error. It is important to notice that only visible parameters will be read; therefore, it is necessary attention to
which node of the group of parameters tree you are viewing. Example: If you wish to read all of them without
filtering per group, just select the tree root.

Equipments (Devices)

WPS v2.5X | 1187

3. Reading/writing of specific parameters. In order to read/write one or more specific parameters, just
select them on the table, right click and choose the desired option: read or write parameter.

4. Reading/writing of group of parameters. In order to read/write only one group of parameters, just select
it on the group tree, right click and choose the desired option: read or write group.

Equipments (Devices)

WPS v2.5X | 1188

11.10.6.4 Hide/Unhide Parameters and Group of Parameters

The parameter can be hidden/unhidden in two ways: individually or in group.

1. Hide parameters. In order to hide a parameter individually, just right click on the desired parameters and
select the Hide Parameter option. You can also press the Delete key.

2. Unhide Parameters. In order to show hidden parameters, right click and choose the Unhide Parameters

Equipments (Devices)

WPS v2.5X | 1189

or press the Insert key. Then, a window will open and show the hidden parameters. Now, you just have to
select the desired parameters and confirm.
Note: The parameters shown on this new window are only those which belong to the current filter according to
the selection on the parameter group tree. In the figures below, the CAN group is selected; that means that
only the hidden parameters of this group will be shown.

Equipments (Devices)

WPS v2.5X | 1190

Equipments (Devices)

WPS v2.5X | 1191

3. Hide Group of Parameters. In order to hide a group of parameters, just select the group on the tree and
use the Hide Group option.

Equipments (Devices)

WPS v2.5X | 1192

Equipments (Devices)

WPS v2.5X | 1193

4. Unhide Group of Parameters. In order to show a hidden group of parameters, just select the root of the
group tree and select the Unhide Group option. A window will open showing the groups that are hidden; then
just select the group you wish to unhide.

Equipments (Devices)

WPS v2.5X | 1194

Equipments (Devices)

WPS v2.5X | 1195

Equipments (Devices)

WPS v2.5X | 1196

5. Hide and Show Parameters and Groups of Parameters. By means of this option, you have full control
of the parameters and groups of parameters. It is possible to hide and unhide individual parameters, multiple
parameters, individual groups and multiple groups in the same action.

Equipments (Devices)

WPS v2.5X | 1197

Equipments (Devices)

WPS v2.5X | 1198

11.10.6.5 User Parameters

In order to open the configuration screen of the user parameters, just click on the User Parameters option on
the Parameter node of the project tree or click on the icon indicated on the tool bar of the parameter file.

Configuration Table.

On the user parameter configuration table, it is possible to define several attributes to the parameters, such as
description, minimum and maximum values, unit, digits, data type, etc.

NOTE!
These settings will be automatically displayed in the parameter table. However, to be sent to the
device, you need to download the resource.

Equipments (Devices)

WPS v2.5X | 1199

Table fields:

Parameter: User parameter identification.

Description: Description of the user parameter in the parameter table. On devices that have text-based
HMIs, the description is sent to the machine and displayed on the HMI.

Minimum: Minimum input value for parameter.

Maximum: Maximum input value for parameter.

Unit: Unit displayed on the device's HMI.

Default: Value loaded when restore factory default is selected.

Retentive: Retain value after rebooting devices.

Hexadecimal: Displays the value in hexadecimal.

Digits: Number of decimal digits for displaying value.

Datatype: Parameter datatype used by the ladder application.

Password: Enables password request by changing parameter value.

Equipments (Devices)

WPS v2.5X | 1200

Read only: It does not allow the writing of values in the parameter by the communication network or the HMI.
Writing is done only by the ladder application.

Display HMI: Displays the parameter in the HMI.

Performs modification: Confirmation options when changing the parameter:
o No confirmation: Does not prompt for confirmation when changing parameter.
o With confirmation and engine stopped: Request confirmation and allow change only with engine stopped.
o With confirmation: Prompt for confirmation when changing parameter.

Stopped motor: Perform change only with motor stopped.

Help: On devices that have text-based HMI, you can edit a help text for the parameter.

View the user parameter

In the parameter table, the user parameters will be shown as they are configured on the configuration screen.

11.10.7Ladder

11.10.7.1 Coil

11.10.7.1.1 DIRECTCOIL

Logical block used to assign direct values of the output variables.

Equipments (Devices)

WPS v2.5X | 1201

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

Operation

The block transfers the value of A for the memory address corresponding to O1.

Diagram

Block Flowchart

Example

The above example keeps the digital output DO9 permanently connected, because the value of A in
this case is the value of the left bus which is always considered high logic level (TRUE).

11.10.7.1.2 IMMEDIATECOIL

Logical block used for assigning values to standard digital outputs instantly.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1202

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

Operation

The block transfers the value of A for the digital output corresponding to O1.
Unlike the direct coil, this block does not wait until the end of the scan cycle so that the output value
is updated; this is done at the same time the block is activated.

NOTE!
This block only works with standard digital outputs of the product.

Compatibility

Device Version

PLC300 1.20 or higher

SCA06 2.00 or higher

Diagram

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1203

Example

The above example immediately activates the internal buzzer when it detects that the power of the
CANopen bus was stopped and remains on until the power is restored.

11.10.7.1.3 INVERTEDCOIL

Logical block used for assigning values denied to output variables.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

Operation

The block transfers the denied value of A for the memory address corresponding to O1.

Diagram

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1204

Example

The above example disables the digital output DO3 when some of the digital inputs DI1 and DI2 are
with FALSE value. When both inputs are with a TRUE value, DO3 activates.

11.10.7.1.4 RESETCOIL

Logical block used for indefinite disabling of output variables.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

Operation

When identifying a TRUE value in A, this block transfers a FALSE value to the memory address
corresponding to O1.
When identifying a FALSE value in A, this block performs no operation.

Diagram

Equipments (Devices)

WPS v2.5X | 1205

Block Flowchart

Example

The example above activates permanently the system control marker that enables end-of-message
character in RS232 communication to identify a TRUE level at the digital input DI5.

11.10.7.1.5 SETCOIL

Logical block used for indefinite enabling of output variables.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

Operation

Equipments (Devices)

WPS v2.5X | 1206

When identifying a TRUE value in A, this block transfers the value of A for the memory address
corresponding to O1.
When identifying a FALSE value in A, this block performs no operation.

Diagram

Block Flowchart

Example

The example above activates permanently the system control marker that enables end-of-message
character in RS232 communication to identify a TRUE level at the digital input DI6.

11.10.7.1.6 TOGGLECOIL

Logical block used for output variables alternance.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1207

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

VAR TOGGLECOIL_INST_0 TOGGLECOIL Instance of access to block structure

Operation

When identifying a transition from FALSE to TRUE (leading edge) on A, the block reverses the status
of O1.

Diagram

Block Flowchart

Example

The above example inverts the state of the digital output DO6 to each disabling the internal buzzer.

Equipments (Devices)

WPS v2.5X | 1208

11.10.7.2 Communication Network

11.10.7.2.1 CANopen

11.10.7.2.1.1 CANopen Overview

Operation in the CANopen Network - Master Mode

Besides the operation as a slave, the PLC300 programmable controller also allows operation as a master for
the CANopen network. PLC300 characteristics and functions as a master for the CANopen network will be
described as follows.

Enabling Function CANopen Master

By default, PLC300 programmable controller is programmed to operate as a slave for the CANopen network.
Programming the equipment as a master for the network must be done by using the WSCAN software that
also allows the configuration of the whole CANopen network. A detailed description of the WSCAN software
windows and functions must be obtained in the menu "Help" in the software itself.

After the master configuration has been created, it is necessary to download the configurations by using one
of the product's programming interfaces - refer to the user manual for further information. Once programmed as
a master for the network, in case it is necessary to delete said configurations, the function to delete the user
program - available in the Setup menu - also deletes the CANopen master configurations.

NOTE!
CANopen network is a flexible network that allows several different ways of configuring and
operating. Nonetheless, such a flexibility requires the user to have a good knowledge of the
communication functions and objects used to configure the network, as well as knowledge of the
WSCAN programming software.

CANopen Master Characteristics

PLC300 programmable controller allows the control of a group of up to 63 slaves, using the following
communication tasks and resources:

Network management task (NMT)
63 transmission PDOs
63 reception PDOs
63 Heartbeat Consumers
Heartbeat Producer
SDO Client
SYNC producer/consumer
512 bytes of input network markers
512 bytes of output network markers

Physical characteristics - installation, connector, cable, etc. - are the same for PLC300 operating both as a
master and a slave. Address configurations and communication rate are also necessary for the operation as a
master, but these configurations are programmed by the WSCAN software according to the properties defined
for the master in the software itself.

Equipments (Devices)

WPS v2.5X | 1209

NOTE!
Input network markers are used to map data in RPDOs, while output network markers are used
to map data in TPDOs. They can be accessed in Byte (%IB or %QB), Word (%IW or %QW), or
Double Word (%ID or %QD). Nonetheless, their function is not pre-defined and depends on the
Ladder application developed for the PLC300 controller.

Master Operation

Once programmed to operate as a master, the PLC300 programmable controller will perform the following
steps in order to perform the sequential initialization for each one of the slaves.

1. By sending the communication reset command to the whole network, so that the slaves initialize with
values known for the communication objects.

2. Equipment identification in the network, through the reading via SDO of the 1000h/00h object - Object
Identification.

3. Writing via SDO of all objects programmed for the slave, which usually include the configuration and
mapping of TPDOs and RPDOs, node guarding, heartbeat, besides the manufacturer's specific objects, in
case they are programmed.

4. Error control task initialized - node guarding or heartbeat - in case they are programmed.
5. Sending of the slave to the operating mode.

If one of these steps fails, communication error with the slave will be indicated. Depending on the
configurations, the initialization of slaves will be aborted, and the master will initialize the following slave,
returning to the slave presenting error, after trying to initialize all other slaves in the network.

Similarly, if during the operation of a slave, an error in the error control task is identified, depending on the
configurations made for the master, the slave will be automatically reset and the initialization procedure will be
performed over.

NOTE!
The communication state and the state of each slave can be observed in input system markers.

Blocks for the CANopen Master

Besides the communication and configuration objects made in the WSCAN software, blocks for the monitoring
and sending of commands, which can be used during the creation of the application in Ladder for the PLC300
programmable controller, are also available. It is not necessary to use said blocks during the equipment
operation, but its use provides more flexibility and facilitates the diagnosis of communication problems during
the PLC300 programmable controller operation.

11.10.7.2.1.2 CO_SDORead

Block that performs a reading of data via SDO from a remote slave in CANopen network.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1210

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

NodeID# BYTE Slave address

Index# WORD Index of the object to be accessed in slave

SubIndex# BYTE Sub-index of the object

Size# BYTE Size of data accessed, in bytes

Timeout# WORD
Maximum w aiting time for arrival of data, from the

beginning of the request [ms]

VAR_OUTPUT

Done BOOL Output enabling

Active BOOL Aw aiting response f lag

Busy BOOL Flag of the SDO client is busy w ith another request

Error BOOL Error in the execution f lag

ErrorID BYTE USINT Identif ier of the occurred error

Value BYTE USINT Variable that stores the received data

VAR CO_SDOREAD_INST_0 CO_SDOREAD Instance of access to block structure

Operation

When this block detects a leading edge on Execute it checks whether the SDO client in the specified
NodeID # address is free to send data (Busy variable at FALSE level). If so, it sends the reading
request to the object of Size# size located in Index# and SubIndex# and sets the Active output,
resetting it when receiving the response from the slave. The received data is stored in the Value
variable. If the slave is not free, the block waits Busy go to FALSE level to resubmit the request.

NOTE!
If Execute goes to FALSE level and Busy is still at TRUE level, the request is canceled.

NOTE!
Value is an array of size equal to Size#. It is important to check this compatibility not to generate
errors in the block.

When Execute has FALSE value, Done remains FALSE. The Done output is only activated when the
block finishes executing successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Equipments (Devices)

WPS v2.5X | 1211

Code Description

0 Executed successfully

1 Card cannot execute the function

2 Timeout in slave response

3 Slave returned error

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1212

Equipments (Devices)

WPS v2.5X | 1213

Example

The example above requests reading of the data size SIZE, located in INDEX - SUBINDEX, of the
NODEID device. This data is forwarded to VALUE. The block ends successfully, Done output is
activated.

11.10.7.2.1.3 CO_SDOWrite

Block that performs a writing of data via SDO from a remote slave in CANopen network.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1214

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

NodeID# BYTE Slave address

Index# WORD Index of the object to be accessed in slave

SubIndex# BYTE Sub-index of the object

Size# BYTE Size of data accessed, in bytes

Timeout# WORD
Maximum w aiting time for arrival of data, from the

beginning of the request [ms]

Value BYTE USINT Variable that has the data to be w ritten

VAR_OUTPUT

Done BOOL Output enabling

Active BOOL Aw aiting response f lag

Busy BOOL Flag of the SDO client is busy w ith another request

Error BOOL Error in the execution f lag

ErrorID BYTE USINT Identif ier of the occurred error

VAR CO_SDOWRITE_INST_0 CO_SDOWRITE Instance of access to block structure

Operation

When this block detects a leading edge on Execute it checks whether the SDO client in the specified
NodeID # address is free to send data (Busy variable at FALSE level). If so, it sends the writing
request to the object of Size# size located in Index# and SubIndex# and sets the Active output,
resetting it when receiving the response from the slave. If the slave is not free, the block waits Busy
go to FALSE level to resubmit the request.

NOTE!
If Execute goes to FALSE level and Busy is still at TRUE level, the request is canceled.

NOTE!
Value is an array of size equal to Size#. It is important to check this compatibility not to generate
errors in the block.

When Execute has FALSE value, Done remains FALSE. The Done output is only activated when the
block finishes executing successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Code Description

0 Executed successfully

1 Card cannot execute the function

2 Timeout in slave response

3 Slave returned error

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1215

Equipments (Devices)

WPS v2.5X | 1216

Example

The example above requests writing of the data size VALUE, located in INDEX - SUBINDEX, of the
NODEID device. The block ends successfully, Done output is activated.

11.10.7.3 Compare

11.10.7.3.1 COMPEQ

Block that compares the values of Value1 and Value2, enabling the output Q if both are equal.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of equality

Operation

When this block has a TRUE value in EN, it sends to the output Q the TRUE value if Value1 and
Value2 are the same. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1217

Example

The example above checks equality between VALUE1 and VALUE2. Since both variables have the
same value, the Q output is activated.

The example above checks equality between VALUE1 and VALUE2. Since both variables have the
same value, the Q output is activated. Notice that the types of the input variables can be different
without causing execution problems.

Equipments (Devices)

WPS v2.5X | 1218

The example above checks equality between VALUE1 and VALUE2. Since both variables have
different values, the Q output is disabled.

11.10.7.3.2 COMPGE

Block that compares the values of Value1 and Value2, enabling the output Q if Value1 is higher than
or equal to Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of equality or majority of Value1

Operation

When this block has a TRUE value in EN it sends the Q output to the TRUE value if Value1 is higher
than or equal to Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1219

Example

The example above checks equality or majority of VALUE1 in relation to VALUE2. Since VALUE1
has lower value than VALUE2, the Q output is disabled.

The example above checks equality or majority of VALUE1 in relation to VALUE2. Since both
variables have the same value, the Q output is activated.

Equipments (Devices)

WPS v2.5X | 1220

The example above checks equality or majority of VALUE1 in relation to VALUE2. Since VALUE1
has higher value than VALUE2, the Q output is activated.

11.10.7.3.3 COMPGT

Block that compares the values of Value1 and Value2, enabling the output Q if Value1 is higher than
Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of majority of Value1

Operation

When this block has a TRUE value in EN, it sends to the Q output the TRUE value if Value1 is higher
than Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1221

Example

The example above checks the majority of VALUE1 in relation to VALUE2. Since VALUE1 has lower
value than VALUE2, the Q output is disabled.

The example above checks the majority of VALUE1 in relation to VALUE2. Since both variables have
the same value, the Q output is disabled.

Equipments (Devices)

WPS v2.5X | 1222

The example above checks the majority of VALUE1 in relation to VALUE2. Since VALUE1 has higher
value than VALUE2, the Q output is activated.

11.10.7.3.4 COMPLE

Block that compares the values of Value1 and Value2, enabling the output Q if Value1 is lower than or
equal to Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of equality or minority of Value1

Operation

When this block has a TRUE value in EN, it sends to the Q output the TRUE value if Value1 is lower
than or equal to Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1223

Example

The example above checks equality or minority of VALUE1 in relation to VALUE2. Since VALUE1
has lower value than VALUE2, the Q output is activated.

The example above checks equality or minority of VALUE1 in relation to VALUE2. Since both
variables have the same value, the Q output is activated.

Equipments (Devices)

WPS v2.5X | 1224

The example above checks equality or minority of VALUE1 in relation to VALUE2. Since VALUE1
has higher value than VALUE2, the Q output is disabled.

11.10.7.3.5 COMPLT

Block that compares the values of Value1 and Value2, enabling the output Q if Value1 is lower than
Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of minority of Value1

Operation

When this block has a TRUE value in EN, it sends to the Q output the TRUE value if Value1 is lower
than or equal to Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1225

Example

The example above checks minority of VALUE1 in relation to VALUE2. Since VALUE1 has lower
value than VALUE2, the Q output is activated.

The example above checks the minority of VALUE1 in relation to VALUE2. Since both variables have
the same value, the Q output is disabled.

Equipments (Devices)

WPS v2.5X | 1226

The example above checks the minority of VALUE1 in relation to VALUE2. Since VALUE1 has higher
value than VALUE2, the Q output is disabled.

11.10.7.3.6 COMPNE

Block that compares the values of Value1 and Value2, enabling the Q output if Value1 is different from
Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of inequality

Operation

When this block has a TRUE value in EN, it sends to the Q output the TRUE value if Value1 is
different from Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1227

Example

The example above checks inequality between VALUE1 and VALUE2. Since both variables have
different values, the Q output is activated.

The example above checks equality between VALUE1 and VALUE2. Since both variables have the
same value, the Q output is disabled.

11.10.7.4 Contact

11.10.7.4.1 NCCONTACT

Normally closed contact.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1228

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT I1 BOOL Block control input

Operation

When variable I1 is with TRUE value, B receives FALSE.
When variable I1 is with FALSE value, B receives the value of A.

NOTE!
Watch out for series and parallel associations of contacts. Refer to section Contact Logic for
further information.

Diagram

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1229

Example

The above example performs the transfer of the opposite value of digital input DI1 to the digital output
DO2.

11.10.7.4.2 NOCONTACT

Normally open contact.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT I1 BOOL Block control input

Operation

When variable I1 is with FALSE value, B receives FALSE.
When variable I1 is with TRUE value, B receives the value of A.

NOTE!
Watch out for series and parallel associations of contacts. Refer to section Contact Logic for
further information.

Diagram

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1230

Example

The above example performs the transfer of the value of digital input DI1 to the digital output DO2.

11.10.7.4.3 NTSCONTACT

Falling edge transition contact.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT I1 BOOL Block control input

VAR NTSCONTACT_INST_0 NTSCONTACT Instance of access to block structure

Operation

At the instant the variable I1 transitions from TRUE to FALSE (falling edge or negative edge
transition), B receives the value of A for a scan cycle.
At all other times, B receives the FALSE value.

NOTE!
Watch out for series and parallel associations of contacts. Refer to section Contact Logic for
further information.

Diagram

Equipments (Devices)

WPS v2.5X | 1231

Block Flowchart

Example

The above example resets the digital output DO1 if the SHIFT key is pressed or a positive pulse on
the digital input DI2 is given.

11.10.7.4.4 PTSCONTACT

Leading edge transition contact.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1232

Block Structure

Variable Type Name Data Type Description

VAR_INPUT I1 BOOL Block control input

VAR PTSCONTACT_INST_0 PTSCONTACT Instance of access to block structure

Operation

At the instant the variable I1 transitions from FALSE to TRUE (leading edge or positive edge
transition), B receives the value of A for a scan cycle.
At all other times, B receives the FALSE value.

NOTE!
Watch out for series and parallel associations of contacts. Refer to section Contact Logic for
further information.

Diagram

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1233

Example

The above example resets the digital output DO1 if the SHIFT key is pressed and a positive pulse on
the digital input DI2 is given.

11.10.7.5 Control

11.10.7.5.1 PID

Block that performs the function of a discrete PID controller. From the input variables, it calculates the
corresponding controller output.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1234

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

SetPoint REAL Automatic reference (pre-control)

ManualSetPoint REAL Forced reference (post control)

SelectSetPoint BOOL Selects w hich reference to use

Feedback REAL Feedback loop variable

MinimumOutput REAL Minimum value of the controller output

MaximumOutput REAL Maximum value of the controller output

Kp REAL Proportional gain

Ki REAL Integral gain

Kd REAL Derivative gain

TauSetPoint# REAL Time constant of the automatic reference in put f ilter

Type# BYTE Controller type

Action# BYTE Control action

Ts# UINT Sampling time [ms]

VAR_OUTPUT
ENO BOOL Output enabling

Output REAL Controller output

VAR PID_INST_0 PID Instance of access to block structure

Operation

On the positive transition edge in EN, Output receives zero value, and the block executes its
functionality as EN is at TRUE level.

When enabled, this block performs a routine PID control with the Kp, Ki and Kd parameters chosen.
The PID topology used may be the Academic or Parallel, depending on what is chosen in Type#.

Academic Form:

Parallel Form:

Equipments (Devices)

WPS v2.5X | 1235

The levels of the output signal of the controller are saturated at value MinimumOutput and
MaximumOutput. The SelectSetPoint input level FALSE causes the SetPoint reference be adopted,
allowing the controller maintains control over the process. When SelectSetPoint goes to TRUE level,
the controller has no more domain, and ManualSetPoint becomes to be considered the output signal
of the controller.

Action# will define the feedback operation. If Action# is DIRECT, the operation will be SetPoint –
Feedback. If Action# is REVERSE, the operation will be Feedback – SetPoint.

Feedback receives the process variable considered as the plant output. Ts# receives the sampling
time for the controller and # TauSetPoint receives the time constant for the input filter of the automatic
reference.

When EN has FALSE value, Output remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

NOTE!
Effects of the alteration of gains on the process

If Kp decreases, the process becomes slower; generally more stable or less oscillating; it has
less overshoot.
If Kp increases, the process responds faster; it may become more unstable or more
oscillating; it has more overshoot.
If Ki decreases, the process becomes slower, lagging to reach the "SetPoint"; it becomes
more stable or less oscillating; it has less overshoot.
If Ki increases, the process becomes faster, quickly reaching the "SetPoint"; it becomes more
unstable or more oscillating; it has more overshoot.
If Kd decreases, the process becomes slower; it has less overshoot.
If Kd increases, it has more overshoot.

Equipments (Devices)

WPS v2.5X | 1236

NOTE!
How to improve the performance of the process through the adjustment of gains (valid for the
Academic PID)

If the performance of the process is almost good, but the overshoot is a bit high, try to: (1)
decrease Kp 20%, (2) decrease Ki 20% and/or (3) decrease Kd 50%.
If the performance of the process is almost good, but it does not have overshoot and lags to
reach the "SetPoint", try to: (1) increase Kp 20%, (2) increase Ki 20% and/or (3) increase Kd
50%.
If the performance of the process is good, but the process output is varying too much, try to:
(1) increase Kd 50%, (2) decrease Kp 20%.
If the performance of the process is bad, i.e. after start up, the transitory lasts several periods
of oscillation that reduce very slowly or never reduce at all, try to: (1) decrease Kp 50%.
If the performance of the process is bad, i.e. after start up it slowly moves towards the
"SetPoint" without overshoot, but is still very far and the process output is less than the rated
value, try to: (1) increase Kp 50%, (2) increase Ki 50%, (3) increase Kd 70%.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1237

Equipments (Devices)

WPS v2.5X | 1238

Example

The above example creates a loop of a digital PID form with sampling time 50 ms, using the
constants KP, KI and KD for control. Automatic reference SETPOINT, filtered by a first order filter with
time constant of 0:01 is used. The error signal is calculated as the difference between the filtered
reference and variable SAIDA_PLANTA. The controller output is saturated between the values 0.1 and
2.5 and sent to the variable ENTRADA_PLANTA.

11.10.7.6 Conversion

11.10.7.6.1 BCD

11.10.7.6.1.1 BCD_TO_WORD

Block that performs the conversion of a BCD code into a WORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in BCD

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as BCD and converts it to
WORD, storing in Result.

Equipments (Devices)

WPS v2.5X | 1239

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

The above example converts the VALUE variable, in BCD, into a WORD value storing the final result
in RESULT. The block ends with success and ENO output is activated.

11.10.7.6.1.2 WORD_TO_BCD

Block that performs the conversion of a WORD value into a BCD code.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1240

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in BCD

Operation

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it into
BCD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1241

The examples above perform the conversion of VALUE variable, in WORD, into a BCD value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.10.7.6.2 BOOL

11.10.7.6.2.1 BYTE_TO_BOOL

Block that performs the conversion of a BYTE value into a BOOL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BYTE USINT SINT Value in BYTE

VAR_OUTPUT
ENO BOOL End of operation

Result BOOL Value in BOOL

Operation

When this block has a TRUE value in EN, it interprets the Value value as BYTE and converts it into
BOOL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1242

Example

The examples above perform the conversion of VALUE variable, in BYTE, into a BOOL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.10.7.6.2.2 DWORD_TO_BOOL

Block that performs the conversion of a DWORD value into a BOOL value.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1243

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT
ENO BOOL End of operation

Result BOOL Value in BOOL

Operation

When this block has a TRUE value in EN, it interprets the Value value as DWORD and converts it into
BOOL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1244

The examples above perform the conversion of VALUE variable, in DWORD, into a BOOL value
storing the final result in RESULT. The block ends with success and ENO output is activated.

11.10.7.6.2.3 LREAL_TO_BOOL

Block that performs the conversion of a LREAL value into a BOOL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value LREAL Value in LREAL

VAR_OUTPUT
ENO BOOL End of operation

Result BOOL Value in BOOL

Operation

When this block has a TRUE value in EN, it interprets the Value value as LREAL and converts it into
BOOL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Equipments (Devices)

WPS v2.5X | 1245

Block Flowchart

11.10.7.6.2.4 REAL_TO_BOOL

Block that performs the conversion of a REAL value into a BOOL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value in REAL

VAR_OUTPUT
ENO BOOL End of operation

Result BOOL Value in BOOL

Operation

When this block has a TRUE value in EN, it interprets the Value value as REAL and converts it into
BOOL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1246

Example

The examples above perform the conversion of VALUE variable, in REAL, into a BOOL value storing

Equipments (Devices)

WPS v2.5X | 1247

the final result in RESULT. The block ends with success and ENO output is activated. Notice in the
last example that the values very close to the machine epsilon may result in an interpretation of the
FALSE value.

11.10.7.6.2.5 WORD_TO_BOOL

Block that performs the conversion of a WORD value into a BOOL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT
ENO BOOL End of operation

Result BOOL Value in BOOL

Operation

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it into
BOOL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1248

Example

The examples above perform the conversion of VALUE variable, in WORD, into a BOOL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.10.7.6.3 BYTE

11.10.7.6.3.1 BOOL_TO_BYTE

Block that performs the conversion of a BOOL value into a BYTE value.

Equipments (Devices)

WPS v2.5X | 1249

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BOOL Value in BOOL

VAR_OUTPUT
ENO BOOL End of operation

Result BYTE USINT SINT Value in BYTE

Operation

When this block has a TRUE value in EN, it interprets the Value value as BOOL and converts it into
BYTE, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1250

The examples above perform the conversion of variable VALUE, in BOOL, into a BYTE value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.10.7.6.3.2 DWORD_TO_BYTE

Block that performs the conversion of a DWORD value into a BYTE value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT
ENO BOOL End of operation

Result BYTE USINT SINT Value in BYTE

Operation

When this block has a TRUE value in EN, it interprets the Value value as DWORD and converts it into
BYTE, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1251

Example

The examples above perform the conversion of variable VALUE, in DWORD, into a BYTE value storing
the final result in RESULT. The block ends with success and ENO output is activated. Notice that
only the eight least significant bits are taken into account.

11.10.7.6.3.3 DWORD_TO_BYTES

Block that performs the conversion of a 32 bits (DWORD) value into four 8 bits (4 BYTES) value.

Equipments (Devices)

WPS v2.5X | 1252

Ladder Representation

Block Structure

Variable Type Name Data type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT

ENO BOOL End of operation

Result1 BYTE USINT SINT Value in BYTE (LSB)

Result2 BYTE USINT SINT Value in BYTE

Result3 BYTE USINT SINT Value in BYTE

Result4 BYTE USINT SINT Value in BYTE (MSB)

Operation

When this block has a TRUE value in EN, it interprets the Value value as DWORD and converts it into
four BYTE values (from Result1 to Result4, where Result 1 is LSB), storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1253

Example

Equipments (Devices)

WPS v2.5X | 1254

The examples above perform the conversion of variable VALUE, in DWORD, into four BYTE value
storing the final result in RESULT1, RESULT2, RESULT3 and RESULT4. The block ends with
success and ENO output is activated.

11.10.7.6.3.4 LREAL_TO_BYTE

Block that performs the conversion of a LREAL value into a BYTE value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value LREAL Value in LREAL

VAR_OUTPUT
ENO BOOL End of operation

Result BYTE USINT SINT Value in BYTE

Operation

When this block has a TRUE value in EN, it interprets the Value value as LREAL and converts it into
BYTE, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1255

11.10.7.6.3.5 REAL_TO_BYTE

Block that performs the conversion of a REAL value into a BYTE value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value in REAL

VAR_OUTPUT
ENO BOOL End of operation

Result BYTE USINT SINT Value in BYTE

Operation

When this block has a TRUE value in EN, it interprets the Value value as REAL and converts it into
BYTE, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1256

Example

The examples above perform the conversion of variable VALUE, in REAL, into a BYTE value storing

Equipments (Devices)

WPS v2.5X | 1257

the final result in RESULT. The block ends with success and ENO output is activated. Notice that the
results are truncated in decimal and only the eight least significant bits are taken into account.

11.10.7.6.3.6 WORD_TO_BYTE

Block that performs the conversion of a WORD value into a BYTE value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT
ENO BOOL End of operation

Result BYTE USINT SINT Value in BYTE

Operation

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it into
BYTE, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1258

Example

The examples above perform the conversion of variable VALUE, in WORD, into a BYTE value storing
the final result in RESULT. The block ends with success and ENO output is activated. Notice that
only the eight least significant bits are taken into account.

11.10.7.6.3.7 WORD_TO_BYTES

Block that performs the conversion of a 16 bits (WORD) value in two 8 bits (2 BYTES) value.

Equipments (Devices)

WPS v2.5X | 1259

Ladder Representation

Block Structure

Variable Type Name Data type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT

ENO BOOL End of operation

Result1 BYTE USINT SINT Value in BYTE (LSB)

Result2 BYTE USINT SINT Value in BYTE (MSB)

Operation

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it in
two BYTE variables, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1260

Example

The examples above perform the conversion of variable VALUE "VAL_IN", in WORD, in two BYTE
values storing the final result in RESULT1 and RESULT2. The block ends with success and ENO
output is activated.

Equipments (Devices)

WPS v2.5X | 1261

11.10.7.6.4 DWORD

11.10.7.6.4.1 BOOL_TO_DWORD

Block that performs the conversion of a BOOL value into a DWORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BOOL Value in BOOL

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as BOOL and converts it into
DWORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1262

The examples above perform the conversion of VALUE variable, in BOOL, into a DWORD value
storing the final result in RESULT. The block ends with success and ENO output is activated.

11.10.7.6.4.2 BYTE_TO_DWORD

Block that performs the conversion of a BYTE value into a DWORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BYTE USINT SINT Value in BYTE

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as BYTE and converts it into
DWORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1263

Example

The examples above perform the conversion of variable VALUE, in BYTE, into a DWORD value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.10.7.6.4.3 BYTES_TO_DWORD

Block that performs the conversion of four 8 bits (BYTE) values into a 32 bits (DWORD) value.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1264

Block Structure

Variable Type Name Data type Description

VAR_INPUT

EN BOOL Block enabling

Value1 BYTE USINT SINT Value in BYTE (1st byte - LSB)

Value2 BYTE USINT SINT Value in BYTE

Value3 BYTE USINT SINT Value in BYTE

Value4 BYTE USINT SINT Value in BYTE (4th byte - MSB)

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Operation

When this block has a TRUE value in EN, it interprets the Value1, Value2, Value3 and Value4 values
as BYTE and converts it into a DWORD variable, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1265

Example

The examples above perform the conversion of four variables VALUE1..4, in BYTE, into a DWORD
value storing the final result in RESULT. The block ends with success and ENO output is activated.

11.10.7.6.4.4 LREAL_TO_DWORD

Block that performs the conversion of a LREAL value into a DWORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value LREAL Value in LREAL

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Equipments (Devices)

WPS v2.5X | 1266

Operation

When this block has a TRUE value in EN, it interprets the Value value as LREAL and converts it into
DWORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

11.10.7.6.4.5 REAL_TO_DWORD

Block that performs the conversion of a REAL value into a DWORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value in REAL

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Operation

Equipments (Devices)

WPS v2.5X | 1267

When this block has a TRUE value in EN, it interprets the Value value as REAL and converts it into
DWORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1268

The examples above perform the conversion of variable VALUE, in REAL, into a DWORD value storing
the final result in RESULT. The block ends with success and ENO output is activated. Note that the
results are truncated in decimal and only the thirty-two least significant bits are taken into account.

11.10.7.6.4.6 WORD_TO_DWORD

Block that performs the conversion of a WORD value into a DWORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it into
DWORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1269

Example

The examples above convert the VALUE variable, in WORD, into a DWORD value storing the final
result in RESULT. The block ends with success and ENO output is activated.

11.10.7.6.4.7 WORDS_TO_DWORD

Block that performs the conversion of two 16 bits (WORD) values into a 32 bits (DWORD) value.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1270

Variable Type Name Data type Description

VAR_INPUT

EN BOOL Block enabling

Value1 WORD UINT INT 1st WORD (Less Signif icant Word)

Value2 WORD UINT INT 2nd WORD (More Signif icant Word)

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Operation

When this block has a TRUE value in EN, it interprets the Value1 and Value2 values as WORD and
converts it into a DWORD variable, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1271

The examples above perform the conversion of two variable VALUE1 and VALUE2, in WORD, into a
DWORD value storing the final result in RESULT. The block ends with success and ENO output is
activated.

11.10.7.6.5 LREAL

11.10.7.6.5.1 BOOL_TO_LREAL

Block that performs the conversion of a BOOL value into a LREAL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BOOL Value in BOOL

VAR_OUTPUT
ENO BOOL End of operation

Result LREAL Value in LREAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as BOOL and converts it into
LREAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1272

11.10.7.6.5.2 BYTE_TO_LREAL

Block that performs the conversion of a BYTE value into a LREAL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BYTE USINT SINT Value in BYTE

VAR_OUTPUT
ENO BOOL End of operation

Result LREAL Value in LREAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as BYTE and converts it into
LREAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1273

11.10.7.6.5.3 DWORD_TO_LREAL

Block that performs the conversion of a DWORD value into a LREAL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT
ENO BOOL End of operation

Result LREAL Value in LREAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as DWORD and converts it into
LREAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1274

11.10.7.6.5.4 REAL_TO_LREAL

Block that performs the conversion of a REAL value into a LREAL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL USINT SINT Value in REAL

VAR_OUTPUT
ENO BOOL End of operation

Result LREAL Value in LREAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as REAL and converts it into
LREAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1275

11.10.7.6.5.5 WORD_TO_LREAL

Block that performs the conversion of a WORD value into a LREAL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT
ENO BOOL End of operation

Result LREAL Value in LREAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it into
LREAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1276

11.10.7.6.6 Rad-Deg

11.10.7.6.6.1 DEG_TO_RAD

Block that performs the conversion of a value in degrees into a value in radians.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value in degrees

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in radians

Operation

When this block has a TRUE value in EN, it interprets the Value value as in degrees and converts it
into radians, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1277

Example

The examples above perform the conversion of variable VALUE, in degrees, into a corresponding value
in radians storing the final result in RESULT. The block ends with success and ENO output is
activated.

11.10.7.6.6.2 RAD_TO_DEG

Block that performs the conversion of a value in radians into a value in degrees.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1278

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value in radianos

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in graus

Operation

When this block has a TRUE value in EN, it interprets the Value value as in radians and converts it
into degrees, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1279

The examples above perform the conversion of variable VALUE, in radians, into a corresponding value
in degrees storing the final result in RESULT. The block ends with success and ENO output is
activated.

11.10.7.6.7 REAL

11.10.7.6.7.1 BOOL_TO_REAL

Block that performs the conversion of a BOOL value into a REAL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BOOL Value in BOOL

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in REAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as BOOL and converts it into
REAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1280

Example

The examples above perform the conversion of variable VALUE, in BOOL, into a REAL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.10.7.6.7.2 BYTE_TO_REAL

Block that performs the conversion of a BYTE value into a REAL value.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1281

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BYTE USINT SINT Value in BYTE

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in REAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as BYTE and converts it into
REAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1282

The examples above perform the conversion of variable VALUE, in BYTE, into a REAL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.10.7.6.7.3 DWORD_TO_REAL

Block that performs the conversion of a DWORD value into a REAL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in REAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as DWORD and converts it into
REAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1283

Example

The examples above perform the conversion of variable VALUE, in DWORD, into a REAL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.10.7.6.7.4 LREAL_TO_REAL

Block that performs the conversion of a LREAL value into a REAL value.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1284

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value LREAL USINT SINT Value in LREAL

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in REAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as LREAL and converts it into
REAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

11.10.7.6.7.5 WORD_TO_REAL

Block that performs the conversion of a WORD value into a REAL value.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1285

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in REAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it into
REAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1286

The examples above perform the conversion of variable VALUE, in WORD, into a REAL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.10.7.6.8 WORD

11.10.7.6.8.1 BOOL_TO_WORD

Block that performs the conversion of a BOOL value into a WORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BOOL Value in BOOL

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as BOOL and converts it into
WORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1287

Example

The examples above perform the conversion of VALUE variable, in BOOL, into a WORD value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.10.7.6.8.2 BYTE_TO_WORD

Block that performs the conversion of a BYTE value into a WORD value.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1288

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BYTE USINT SINT Value in BYTE

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as BYTE and converts it into
WORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1289

The examples above perform the conversion of variable VALUE, in BYTE, into a WORD value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.10.7.6.8.3 BYTES_TO_WORD

Block that performs the conversion of two 8 bits (BYTE) values into a 16 bits (WORD) value.

Ladder Representation

Block Structure

Variable Type Name Data type Description

VAR_INPUT

EN BOOL Block enabling

Value1 BYTE USINT SINT 1st BYTE (LSB)

Value2 BYTE USINT SINT 2nd BYTE (MSB)

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value1 and Value2 values as BYTE and
converts it into a WORD variable, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1290

Example

The examples above perform the conversion of two variable VALUE1 and VALUE2, in BYTE, into a
WORD value storing the final result in RESULT. The block ends with success and ENO output is
activated.

11.10.7.6.8.4 DWORD_TO_WORD

Block that performs the conversion of a DWORD value into a WORD value.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1291

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as DWORD and converts it into
WORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1292

The examples above convert the VALUE variable, in DWORD, into a WORD value storing the final
result in RESULT. The block ends with success and ENO output is activated. Notice that only the
sixteen least significant bits are taken into account.

11.10.7.6.8.5 DWORD_TO_WORDS

Block that performs the conversion of a 32 bits (DWORD) value in two 16 bits (2 WORD) value.

Ladder Representation

Block Structure

Variable Type Name Data type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT

ENO BOOL End of operation

Result1 WORD UINT INT Value in WORD (Less Signif icant Word)

Result2 WORD UINT INT Value in WORD (More Signif icant Word)

Operation

When this block has a TRUE value in EN, it interprets the value as DWORD and converts it in two
WORD variables (Result1 and Result2), storing in Result.

When EN has FALSE value, Result remains unchanged.

Equipments (Devices)

WPS v2.5X | 1293

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1294

The examples above perform the conversion of a variable VALUE, in DWORD, in two WORD values
storing the final result in RESULT1 and RESULT2. The block ends with success and ENO output is
activated.

11.10.7.6.8.6 LREAL_TO_WORD

Block that performs the conversion of a LREAL value into a WORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value LREAL Value in LREAL

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as LREAL and converts it into
WORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1295

11.10.7.6.8.7 REAL_TO_WORD

Block that performs the conversion of a REAL value into a WORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value in REAL

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as REAL and converts it into
WORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1296

Example

The examples above convert the VALUE variable, in DWORD, into a WORD value storing the final
result in RESULT. The block ends with success and ENO output is activated. Note that the results
are truncated in decimal and only the sixteen least significant bits are taken into account.

Equipments (Devices)

WPS v2.5X | 1297

11.10.7.7 Counter

11.10.7.7.1 CTD

Countdown block of input pulses.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

CD BOOL Pulse identif ier

LD BOOL Loads the value of PV in CV

PV WORD UINT Value of initial configuration

VAR_OUTPUT
Q BOOL Counter zeroed f lag

CV WORD UINT Current count value

VAR CTD_INST_0 CTD Instance of access to block structure

Operation

When this block identifies a leading edge in CD, it decrements the CV variable until it is zero. While
CV equals zero, the output Q remains at TRUE level. By detecting high-level LD, the block loads the
PV value in CV.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1298

Operation Diagram

Equipments (Devices)

WPS v2.5X | 1299

Example

The above example shows the initial conditions of routine. As CV has a value of zero, the Q output is
enabled.

The value of the PV variable was changed to 20, but not yet loaded.

Equipments (Devices)

WPS v2.5X | 1300

By identifying TRUE level in LD, the block loads the PV value to CV. Since this value is greater than
zero, the Q output is disabled.

At each leading edge identified in CD, the value of COUNT is decremented until it reaches zero, when
the Q output is enabled.

11.10.7.7.2 CTU

Block for gradual count of input pulses.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

CU BOOL Pulse identif ier

R BOOL Loads the zero value in CV

PV WORD UINT Maximum count value

VAR_OUTPUT
Q BOOL Counter overrun f lag

CV WORD UINT Current count value

VAR CTU_INST_0 CTU Instance of access to block structure

Operation

When this block identifies a leading edge in CD, it increments the CV variable until it is equal to PV.
While CV equals PV, the output Q remains at TRUE level. By detecting high-level R, the block loads
the zero value in CV.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1301

Operation Diagram

Equipments (Devices)

WPS v2.5X | 1302

Example

The above example shows the initial conditions of routine. Since CV has a lower value than of PV, the
Q output is disabled.

At each leading edge identified in CU, the value of CV is incremented until it reaches the PV value,
when the Q output is enabled.

Equipments (Devices)

WPS v2.5X | 1303

By identifying TRUE level in R, the block loads the zero value to CV. Since this value is lower than of
PV, the Q output is disabled.

11.10.7.7.3 CTUD

Block for gradual count and countdown of input pulses.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

CU BOOL Pulse identif ier for incremental

CD BOOL Pulse identif ier for decremental

R BOOL Loads the zero value in CV

LD BOOL Loads the value of PV in CV

PV WORD UINT Reference value

VAR_OUTPUT

ENO BOOL Output enabling

QU BOOL Counter overrun f lag

QD BOOL Counter zeroed f lag

CV WORD UINT Current count value

VAR CTUD_INST_0 CTUD Instance of access to block structure

Operation

When this block has a TRUE value in EN, it acts as a CTD block and block CTU at the same time
acting on the same CV counter. That is: increments CV until it reaches PV to the leading edges in
CU and decrements CV until it reaches zero to the leading edges in CD. A positive transition in R
carries zero in CV, while a leading edge in LD loads the PV value in CV. If CV has zero value, QD
receives TRUE, and if CV has value equal to PV, QU receives TRUE.

Equipments (Devices)

WPS v2.5X | 1304

The ENO value forwards to the next Ladder block the EN value.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1305

Equipments (Devices)

WPS v2.5X | 1306

Operation Diagram

Example

Equipments (Devices)

WPS v2.5X | 1307

The example above shows the disabled block, with all its internal variables zeroed. Although the
external controls are activated, these values are not forwarded to the instance of the block.

When activated, the block identifies the value of PRESET, loading it in PV, and identifies that the
output is at zero, enabling the QD output. When execution is completed, the ENO output is activated.

At each leading edge identified in CU, the value of CV is incremented until it reaches the PV value,
when the QU output is enabled. When execution is completed, the ENO output is activated.

At each leading edge detected in CD, the CV value is decremented. When CV is a value between
zero and PV, both QD and QU outputs are deactivated. When execution is completed, the ENO
output is activated.

Equipments (Devices)

WPS v2.5X | 1308

A TRUE value in R resets CV, while a TRUE value in LD loads the value of PV to CV. As we can see,
R prevails over LD, leaving CV and enabling the QD output. When execution is completed, the ENO
output is activated.

11.10.7.8 Data Transfer

11.10.7.8.1 ARRAYCOPY

Block that copies an array from a certain position to another array or to itself.

Ladder Representation

Block Structure

Variable Type Name Data type Description

VAR_INPUT

EN BOOL Block enabling

VAR_SRC

Array: BYTE USINT

SINT WORD UINT

INT DWORD UDINT

DINT REAL

Input Array

POS_SRC
BYTE USINT WORD

UINT

Position of the input array from w hich the copy w ill be

made

POS_DST
BYTE USINT WORD

UINT

Position of the output array from w hich it w ill be

replaced

LEN
BYTE USINT WORD

UINT
Number of array positions to be copied

VAR_OUTPUT

ENO BOOL End of operation

Result

Array: BYTE USINT

SINT WORD UINT

INT DWORD UDINT

DINT REAL

Output Array

Equipments (Devices)

WPS v2.5X | 1309

Operation

This block, when it has a value of TRUE in EN, copies LEN values from the POS_SRC position from
the input array (VAR_SRC) to the position POS_DST into the destination array (Result).

Comments:
- POS_SRC, POS_DST and LEN input variables only accept positive integers. If a negative value is
assigned to any of them, the value zero will be considered.
- The Input Array can be repeated on the output without worrying about data being overwritten.
- If the amount of data to be copied defined by LEN exceeds the last position of the input array, only
valid data will be copied to the last position of the input array, thus avoiding any garbage being
assigned to the output array.
- If the amount of data to be copied defined by LEN exceeds the last position of the output array, only
the data required to complete it will be copied, preventing subsequent memory from receiving
unwanted values.
- The block will not execute if LEN has a value greater than the size of the input array.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

NOTE!

It is important to notice that not only LEN but also POS_SRC will not exceed the
VAR_SRC array's size. The same must be noticed when setting values to POS_DST,
related to the output array Result.

To learn how to create arrays please go to: Ladder > Editor > Variables > Editing in
the Rung

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1310

Equipments (Devices)

WPS v2.5X | 1311

In the examples above the value of the variable SRC is copied to DST array, according to source
position (POS_SRC), destination (POS_DST) and the lenght to be copied (LEN). The block ends with
success and ENO output is activated.

11.10.7.8.2 DEMUX

Block that creates 16 new BOOL variables from the decomposition of a WORD variable.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1312

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Word WORD UINT INT Input variable of 15 bits

VAR_OUTPUT
ENO BOOL End of operation

Bit0 – Bit15 BOOL Bit of the corresponding position of Word

Operation

When this block has a TRUE value in EN, it decomposes the input variable in Word 15 Boolean
values stored in Bit0 to Bit15 variables. Bit0 corresponds to the LSB (least significant bit) and Bit15
corresponds to the MSB (most significant bit).

When EN has FALSE value, output variables remain unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1313

Example

The example above decomposes the value of MYWORD in Boolean values, which are stored in the
output variables BIT0 to Bit15. The block ends successfully and the ENO output is activated.

Equipments (Devices)

WPS v2.5X | 1314

11.10.7.8.3 DEMUX2

Block that creates 32 new BOOL variables from the decomposition of a DWORD variable.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1315

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

DWord DWORD UDINT DINT Input variable of 15 bits

VAR_OUTPUT ENO BOOL End of operation

Bit0 – Bit31 BOOL Bit of the corresponding position of Word

Operation

When this block has a TRUE value in EN, it decomposes the input variable in DWord 32 Boolean
values stored in Bit0 to Bit31 variables. Bit0 corresponds to the LSB (least significant bit) and Bit15
corresponds to the MSB (most significant bit).

When EN has FALSE value, output variables remain unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1316

The example above decomposes the value of MYDWORD in Boolean values, which are stored in the
output variables BIT0 to Bit31. The block ends successfully and the ENO output is activated

11.10.7.8.4 ILOAD

Block which indirectly loads the value of a variable and transfers it to Value.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1317

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Group# BYTE Group w here the variable is stored

DataType# BYTE Data type of the selected variable

Address DWORD UDINT DINT Address of the global variable, as its group

VAR_OUTPUT

ENO BOOL End of operation

Value
As selected in

DataType#
Value of the selected variable

Operation

When this block has a TRUE value in EN, it loads, in Value, the of the Address variable belonging to
the Group# group, as the selected DataType#.

When EN has FALSE value, Value remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1318

Example

The above example loads the value of the address 40 of group 2 (GLOBAL_SYSTEM%S), which
represents the status of ESC key in UINT format for the VALUE variable. The block ends with
success and ENO output is activated.

11.10.7.8.5 ILOADBOOL

Block that indirectly loads the value of a bit in a global variable address.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Group# BYTE Group w here the variable is stored

Address DWORD UDINT DINT Address of the global variable, as its group

Bit BYTE USINT SINT Position of the bit to be checked

VAR_OUTPUT
ENO BOOL End of operation

Value BOOL Value of the bit selected by the input arguments

Operation

When this block has a TRUE value in EN, it loads, in Value, the Bit contents of the Address variable
belonging to the Group# group.

When EN has FALSE value, Value remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1319

Example

The above example loads the value of bit 1 of the address 24 of group 2 (S GLOBAL_SYSTEM%),
which represents the status of ESC key for the VALUE variable. The block ends with success and
ENO output is activated.

11.10.7.8.6 ISTORE

Block that indirectly loads the Value value in a variable.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1320

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Group# BYTE Group w here the variable is stored

DataType# BYTE Data type of the selected variable

Address DWORD UDINT DINT Address of the global variable, as its group

Value

Depending on the

selection of the

DataType#

Value to be w ritten in the selected variable

VAR_OUTPUT ENO BOOL End of operation

Operation

When this block has a TRUE value in EN, it loads the Value value in the contents of the Address
variable belonging to the Group# group, as the selected DataType#.

When EN has FALSE value, Value remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1321

Example

The example above stores the VALUE value in WORD format in address 444 of group 3
(GLOBAL_SYSTEM% C), which represents the index of the communication port Modbus TCP. The
block ends with success and ENO output is activated.

11.10.7.8.7 ISTOREBOOL

Block that indirectly loads the Value value in a bit in a global variable address.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1322

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Group# BYTE Group w here the variable is stored

Address DWORD UDINT DINT Address of the global variable, as its group

Bit BYTE USINT SINT Position of the bit to be modif ied

Value BOOL New value of the selected bit

VAR_OUTPUT ENO BOOL End of operation

Operation

When this block has a TRUE value in EN, it loads the Value value in the Bit contents of the Address
variable belonging to the Group# group.

When EN has FALSE value, Value remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1323

Example

The example above stores the value of VALUE in bit 7 of the address 121 in group 3
(GLOBAL_SYSTEM% C), which represents the disable command of CANopen communication. The
block ends with success and ENO output is activated.

11.10.7.8.8 MUX

Block that creates a new WORD variable from the concatenation of 16 BOOL variables.

Equipments (Devices)

WPS v2.5X | 1324

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Bit0 – Bit15 BOOL Bit of the corresponding position in the new w ord

VAR_OUTPUT
ENO BOOL End of operation

Word WORD UINT INT New w ord formed from the input bits

Operation

When this block has a TRUE value in EN, it concatenates Boolean values of the input variables and
stores this value in the variable Word. Bit0 corresponds to LSB (least significant bit) and Bit15
corresponds to the MSB (most significant bit).

When EN has FALSE value, Word remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1325

Example

The above example concatenates the Boolean values of the input bits of the block to form the output
word stored in MYWORD. The block ends with success and ENO output is activated.

Equipments (Devices)

WPS v2.5X | 1326

11.10.7.8.9 MUX2

Block that creates a new DWORD variable from the concatenation of 32 BOOL variables.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1327

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Bit0 – Bit31 BOOL Bit of the corresponding position in the new w ord

VAR_OUTPUT
ENO BOOL End of operation

DWord DWORD UDINT DINT New w ord formed from the input bits

Operation

When this block has a TRUE value in EN, it concatenates Boolean values of the input variables and
stores this value in the variable DWord. Bit0 corresponds to LSB (least significant bit) and Bit31
corresponds to the MSB (most significant bit).

When EN has FALSE value, Word remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1328

The above example concatenates the Boolean values of the input bits of the block to form the output
word stored in MYDWORD. The block ends with success and ENO output is activated.

11.10.7.8.10 SCALE

Block that converts a value from a scale to another one.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1329

Block Structure

Variable Type Name Data type Description

VAR_INPUT

EN BOOL Block enabling

Value
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Input value to be converted

MAX_IN
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Maximum value of input scale

MIN_IN
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Minimum value of input scale

MAX_OUT
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Maximum value of output scale

MIN_OUT
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Minimum value of output scale

VAR_OUTPUT

ENO BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Output value on new scale

Operation

This block, when it has a TRUE value in EN, by setting the minimum and maximum values of the
variable to be converted and the minimum and maximum values of the new scale variable, defined by
the user, performs the Scale function for the conversion of the variable according to equation:

Where:

and

The graph below represents the straight linearized:

Equipments (Devices)

WPS v2.5X | 1330

When EN has FALSE value, DST remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

NOTE!
- The value in MAX

in
 must be greater than value in MIN

in
;

- The value in MAX
out

 must be greater than value in MIN
out

;

- Value in Value according to: MINin = Value = MAXin.

Block Flowchart

Example

The example above stores the value of the variable VALUE in Result. The block considers the
equation described above and ends with success and ENO output is activated.

Equipments (Devices)

WPS v2.5X | 1331

11.10.7.8.11 SEL

Block that replicates to the output the value of an input variable (Value0 or Value1) according to the
Selector selection.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Selector BOOL Variable that selects the input

Value0
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Multiplexed input number 1

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Multiplexed input number 2

VAR_OUTPUT

ENO BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Output value selected

Operation

When this block has a TRUE value in EN, it replicates to the Result variable the Value0 value if
selector is FALSE or the Value1 value if Selector is TRUE.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1332

Example

The above example uses the SELECTOR variable as multiplexing channel selector. When it is at
FALSE level, the RESULT output gets the value of VALUE0. The block ends successfully and the
ENO output is activated.

Equipments (Devices)

WPS v2.5X | 1333

The above example uses the SELECTOR variable as multiplexing channel selector. When it is at
FALSE level, the RESULT output gets the value of VALUE0. The block ends successfully and the
ENO output is activated. Note that the binary pattern has been maintained even though the decimal
representation is corrupted, since DWORD does not accept negative values.

The above example uses the SELECTOR variable as multiplexing channel selector. When it is at
TRUE level, the RESULT output gets the value of VALUE1. The block ends successfully and the ENO
output is activated. Note that the binary pattern has been maintained even though the decimal
representation is corrupted, since DWORD does not accept negative values.

11.10.7.8.12 STORE

Block that performs direct storage of data from a source to a destination.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1334

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

SRC
BYTE USINT SINT WORD UINT

INT DWORD DINT DINT REAL
Data source

VAR_OUTPUT

ENO BOOL End of operation

DST
BYTE USINT SINT WORD UINT

INT DWORD DINT DINT REAL
Data destination

Operation

When this block has a TRUE value in EN, it stores the contents from SRC into DST.

NOTE!
SRC and DST must have data types of the same size.

When EN has FALSE value, DST remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1335

The example above stores the value of the variable SRC in DST. The block ends with success and
ENO output is activated.

The example above stores the value of the variable SRC in DST. The block ends with success and
ENO output is activated. Note that the binary pattern is maintained between variables of different
types.

11.10.7.8.13 SWAP

Block that performs a swap between the odd bytes and consecutive even bytes into Value and sends
the value to Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value
WORD UINT INT

DWORD UDINT DINT
Input variable to be sw apped

VAR_OUTPUT

ENO BOOL End of operation

Result
WORD UINT INT DWORD UDINT

DINT REAL(*)
Output value

Operation

When this block has a TRUE value in EN, it changes the values of the odd bytes (1, 3, 5 and 7) and
the consecutive even bytes (2, 4, 6 and 8, respectively) of the Value variable, storing the result in
Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

NOTA!
Caution when using in Result a variable of REAL type, because the block does not
perform type conversion, that is, it only reverses the bytes in memory.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1336

Example

The example changes the position of byte 1 value of VALUE (0x44) with byte 2 of VALUE (0x3D),
storing the final result (0x44_3D) in RESULT. The block ends with success and ENO output is
activated.

The example changes the position of byte 1 value of VALUE (0x96) with byte 2 of VALUE (0xA8) and
byte 3 of VALUE (0x0D) with byte 4 of VALUE (0x00), storing the final result (0x0D_00_96_A8) in
RESULT. The block ends with success and ENO output is activated.

11.10.7.8.14 SWAP2

Block that rearranges the bytes of a variable.

Equipments (Devices)

WPS v2.5X | 1337

Ladder Representation

Block Structure

Variable type Name Data type Description

VAR_INPUT

EN BOOL Block enabling

Value
WORD UINT INT

DWORD UDINT DINT
Input variable to be rearranged

Type BYTE
Variable that defines the conversion type

according to Table 2

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT

REAL(*)

Output value

Table 1. Block variables.

Type WORD UINT INT ENO DWORD UDINT DINT ENO

0 AB->AB* TRUE ABCD->ABCD TRUE

1 AB->BA TRUE ABCD->DCBA TRUE

2 - FALSE ABCD->CDAB TRUE

3 - FALSE ABCD->BADC TRUE

4 ... - FALSE - FALSE

Table 2. Conversion type (*characters A, B, C and D represents BYTES).

Operation

When this block has a TRUE value in EN, it rearranges the bytes from Value variable, storing the
result in Result.
Type defines how the bytes will be rearranged, as shown in Table 2.
Note that for 16-bit variables, only options 0 and 1 are valid.
For 32-bit variables the options 0, 1, 2, and 3 are valid.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.
Invalid TYPE options assigns FALSE to ENO, and Result value is not changed.

NOTA!
Caution when using in Result a variable of REAL type, because the block does not
perform type conversion, that is, it only reverses the bytes in memory.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1338

Example

The example rearranges the position of value VALUE_IN according to the type set in TYPE_IN = 1
(AB->BA), storing the final result in RESULT. The block ends with success and ENO output is
activated.

11.10.7.8.15 USERERR

Block that generates an alarm or fault with the number programmed by the user.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1339

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

CODE WORD UINT
Error code generated

(950 - 999)

TYPE BYTE

Error type generated

(0 - Alarm)

(1 - Fault)

VAR_OUTPUT ENO BOOL Success in the generation of error

VAR USERERR_INST_0 USERERR (*) Instance of access to block structure

NOTE!
(*) USERERR_INST_0 instance must be configurated to SCA06 and LDW900.

Operation

When this block has a TRUE value in EN, it generates an alarm or equipment failure, depending on
the type defined in TYPE with CODE code.

The value of ENO informs if the generation of alarm or fault has been executed successfully.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1340

Example

The above example, when identifying TRUE level in DI1, generates a fault with the code 974 and sets
the DO1 output.

USERERR table configuration

On devices that have text-based HMI, messages can be configured through an editor. To access the
editor, right click on the USERERR block and select the "Edit USERERR Table" option.

Equipments (Devices)

WPS v2.5X | 1341

The texts configured in the table will be displayed on the HMI when the block USERERR is enabled.

After editing the table, select the argument CODE of the block equal to the CODE column of the
table.

11.10.7.9 Filter

11.10.7.9.1 LOWPASS

Block that filters the input using a low pass filter of first order and inserts the result in the output.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1342

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Input REAL Input signal

Tau REAL Filter time constant

Ts# UINT Sampling time [ms]

VAR_OUTPUT
ENO BOOL Output enabling

Output REAL Filter output

VAR LOWPASS_INST_0 LOWPASS Instance of access to block structure

Operation

When this block has a TRUE value in EN, filters the input value of Input using a low pass first order
filter described by Tau and Ts#, inserting the result in Output. On the leading edge of EN, Output
receives zero.

When EN has FALSE value, Output remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1343

Example

The above example causes OUTPUT, by identifying a leading edge in EN, to display a behavior of first
order with time constant equal to Tau and the sampling time of 2 ms, in order to achieve the reference
set to INPUT. At each calculation completed successfully, the ENO output is activated.

Equipments (Devices)

WPS v2.5X | 1344

11.10.7.10Hardware

11.10.7.10.1 IMMEDIATE_INPUT

Block that performs an instantaneous reading of the selected input value, without changing the value
of images (GLOBAL_IO variables).

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Source# BYTE Inputs to be read (digital or analog)

VAR_OUTPUT
ENO BOOL Output enabling

Destination WORD INT UINT Variable mapped w ith the values of the inputs selected

Operation

When this block has a TRUE value in EN, it gets the immediate value of the selected input in
Source#. If selected the analog input AI1, its value is passed on to Destination. If the digital input is
selected, its bits are concatenated so that DI1 be the least significant bit and DI10 be the most
significant bit and the result is sent to Destination.

When EN has FALSE value, Destination remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Compatibility

Device Version

PLC300 1.20 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1345

Example

The example above is an immediate reading of the signs of the digital inputs DI1 to DI10 of the
PLC300. This reading is then interpreted as a binary sequence with DI1 being the least significant bit
and the result is sent to the DESTINATION variable. The block ends with success, ENO output is
activated.

Equipments (Devices)

WPS v2.5X | 1346

11.10.7.10.2 IMMEDIATE_OUTPUT

Block that performs an instantaneous reading of the selected output port, without changing the value
of images (GLOBAL_IO variables).

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Source WORD INT UINT
Variable mapped w ith the values to be sent to the

selected outputs

VAR_OUTPUT
ENO BOOL Output enabling

Destination# BYTE Outputs to be w ritten (digital or analog)

Operation

When this block has a TRUE value in EN, it writes immediately in the selected output the value of
Source. If selected analog output AO1, the Source value is passed on to it. If the digital outputs are
selected, DO1 will receive the zero bit of Source, DO2 bit one, DO3 bit two, and so on.

When EN has FALSE value, Destination# remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Compatibility

Device Version

PLC300 1.20 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1347

Example

Equipments (Devices)

WPS v2.5X | 1348

The above example is for immediate SOURCE written value, interpreted as a binary sequence, the
digital outputs DO1 to DO9 of the PLC300 and DO1 receives the value of the least significant bit. The
block ends with success, ENO output is activated. Note that the immediate writing does not prevail
over direct coil DO1 or over enabling coils in DO2, DO3 and DO4.

11.10.7.10.3 READENC5

Block that performs counting of encoder pulses.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1349

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

COUNT_SRC BYTE
It determines w hich encoder w ill be used in counting of

pulses

PRESET BOOL Attributes value from PV to CV

RESET# BYTE Chooses the CV reset control

RESET_VAR BOOL
If the choice of RESET # is by variable, it performs the reset

of CV w hen in TRUE value

SAVE# BYTE Chooses the saving control of the counter

SAVE_VAR BOOL
If the choice of SAVE# is by variable, it performs the saving

of CV in SV w hen in TRUE value

REF_CNT LREAL Value of the reference pulse for output enabling

PV LREAL Value of initial configuration

RESTART LREAL Reference value for automatic reset of CV

VAR_OUTPUT

Q BOOL Output enabling

RESET_OCC BOOL Reset f lag

SAVE_OCC BOOL Saving f lag

CV LREAL Value of pulse counter

SV LREAL Last saved counter value

VAR READENC5_INST_0 READENC5 Instance of access to block structure

Operation

When this block identifies a leading edge in EN, it resets its outputs and counts the pulses from the
encoder specified in COUNT_SRC while enabled. This count value is stored in CV.

The specified control in RESET# resets the counter when enabled, while the specified control in
SAVE#, when activated, stores the value of CV in SV. Each of these controls sets its respective flag
(RESET_OCC or SAVE_OCC) for one scan cycle.

The block also allows you to configure an automatic reset when CV reaches the RESTART value.

The value of Q is activated by one scan cycle when CV reaches the value of REF_CNT.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1350

Example

Equipments (Devices)

WPS v2.5X | 1351

The above example reads the encoder 1 and stores its value in COUNTER, with count reference set in
REF and RESET and SAVE control done by the variables LOAD_ZERO and SAVE_COUNT,
respectively. When COUNTER is equals to REF, the output Q is set for one scan cycle.

11.10.7.11Logic

11.10.7.11.1 Logic Bit

11.10.7.11.1.1 RESETBIT

Logical block used to perform reset of a specific bit in a field.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_IN_OUT Data

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable w hose bit w ill be changed

VAR_INPUT
EN BOOL Block enabling

Position BYTE USINT Position of the bit that w ill be changed

VAR_OUTPUT DONE BOOL Operation successful

Operation

This block when it has a TRUE value in EN, resets the bit indicated in Position in the Data variable
that is forwarded to the output already with its updated value.

When EN has FALSE value, Data remains unchanged.

The DONE variable receives the same EN value, except when there is an error in the reset of the bit,
then getting a FALSE value.

Equipments (Devices)

WPS v2.5X | 1352

NOTE!
It is important to notice that Position is within the range of values of bits corresponding to variable
type in Data. For example: if Data is a BYTE, it has 8 bits, and Position must contain a value
between 0 and 7.

Block Flowchart

Example

The example above resets the bit of AUX zero position, whose initial value is 200 (1100 1000, in
binary). Since this bit already had FALSE value, nothing has changed.

The example above resets the bit in position three of AUX by changing its binary value and, therefore,
its decimal representation.

Equipments (Devices)

WPS v2.5X | 1353

The example above resets the bit in position nine of AUX. Since AUX is a variable BYTE type, it has
only eight bits. Thus, the example above creates a runtime error in the block and therefore the output
is not enabled.

11.10.7.11.1.2 SETBIT

Logical block used to perform the set of a specific bit in a field.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_IN_OUT Data

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable w hose bit w ill be changed

VAR_INPUT
EN BOOL Block enabling

Position BYTE USINT Position of the bit that w ill be changed

VAR_OUTPUT DONE BOOL Operation successful

Operation

This block when it has a TRUE value in EN, sets the bit indicated in Position in the Data variable that
is forwarded to the output already with its updated value.

When EN has FALSE value, Data remains unchanged.

The DONE variable receives the same EN value, except when there is an error in the set of the bit,
then getting a FALSE value.

NOTE!
It is important to notice that Position is within the range of values of bits corresponding to variable
type in Data. For example: if Data is a BYTE, it has 8 bits, and Position must contain a value
between 0 and 7.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1354

Example

The example above sets the bit of AUX zero position, whose initial value is 153 (1001 1001, in binary).
Since this bit already had TRUE value, nothing has changed.

The example above sets the bit in position three of AUX by changing its binary value and, therefore,
its decimal representation.

The example above sets the bit in position fifteen of AUX. Since AUX is a variable BYTE type, it has

Equipments (Devices)

WPS v2.5X | 1355

only eight bits. Thus, the example above creates a runtime error in the block and therefore the output
is not enabled.

11.10.7.11.1.3 TESTBIT

Logical block that revolutions the value of a specific bit in a field.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

Data

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable w hose bit w ill be tested

EN BOOL Block enabling

Position BYTE USINT Position of the bit that w ill be changed

VAR_OUTPUT Q BOOL Value of the tested bit

Operation

This block when it has a TRUE value in EN, sends to the output Q the bit value indicated in Position
in the Data variable.

When EN has FALSE value, Q also receives FALSE.

NOTE!
It is important to notice that Position is within the range of values of bits corresponding to variable
type in Data. For example: if Data is a BYTE, it has 8 bits, and Position must contain a value
between 0 and 7.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1356

Example

The example above sets the bit value of zero position of AUX, whose initial value is 74 (0100 1010 in
binary) to the output Q. Since this bit has value 0, the output is disabled.

The example above sets the value of the bit of position three of AUX to the output Q. Since this bit
has value 1, the output is enabled.

The example above sets the bit value of position ten of AUX to output Q. Since AUX is a variable of
BYTE type, it has only eight bits. Thus, the example above creates a runtime error in the block and
therefore the output is disabled.

Equipments (Devices)

WPS v2.5X | 1357

11.10.7.11.2 Logic Boolean

11.10.7.11.2.1 AND

Logical block that performs an boolean "and" operation between two variables, storing the result in a
third one.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

Value2

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the “and” Boolean operation of
input variables Value1 and Value2.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1358

Example

The example above performs an "and" Boolean operation between AUX and AUX2, storing the result in
AUX3.

11.10.7.11.2.2 NOT

Block that performs a logical operation of boolean "not" in a variable, storing the result in another.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1359

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Reference variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the denied Boolean value of
the Value input variable.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

The example above performs a boolean "not" operation in AUX, storing the result in AUX2.

Equipments (Devices)

WPS v2.5X | 1360

11.10.7.11.2.3 OR

Logical block that performs an Boolean "or" operation between two variables, storing the result in a
third one.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

Value2

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the “or” Boolean operation of
input variables Value1 and Value2.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1361

Example

The example above performs an "or" Boolean operation between AUX and AUX2, storing the result in
AUX3.

11.10.7.11.2.4 XNOR

Logical block that performs an Boolean "not exclusive or" operation between two variables, storing the
result in a third one.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1362

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

Value2

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the “denied exclusive or”
Boolean operation of input variables Value1 and Value2.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1363

The example above performs a "denied exclusive or" Boolean operation between AUX and AUX2,
storing the result in AUX3.

11.10.7.11.2.5 XOR

Logical block that performs an Boolean "exclusive or" operation between two variables, storing the
result in a third one.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

Value2

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the “xor” Boolean operation of
input variables Value1 and Value2.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1364

Example

The example above performs a "xor" Boolean operation between AUX and AUX2, storing the result in
AUX3.

11.10.7.11.3 Logic Rotate

11.10.7.11.3.1 ROL

Block that performs a logical left rotation operation in a value passed by Value, storing the result in
Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1365

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable to undergo rotation

Shift BYTE USINT Shift index

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of logical left shifts, according to the Shift value. The most significant bits
that are being discarded are returned to the least significant bits, characterizing the rotation.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1366

Example

The above example performs a logical left shift by one position in the VALUE variable whose initial
value is -100 (1001 1100 in binary). The discarded bits on the left are reinserted on the right. The final
result (0011 1001 in binary) is stored in RESULT.

The above example performs a logical left rotation by five positions in the VALUE variable whose initial
value is 21 (0001 0101 in binary). The discarded bits on the left are reinserted on the right. The final
result (1010 0010 in binary) is stored in RESULT.

11.10.7.11.3.2 ROR

Block that performs a logical right rotation operation in a value passed by Value, storing the result in
Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1367

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable to undergo rotation

Shift BYTE USINT Shift index

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of logical right shifts, according to the Shift value. The least significant bits
that are being discarded are returned to the most significant bits, characterizing the rotation.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1368

Example

The above example performs a logic right shift by one position in the VALUE variable whose initial
value is -128 (1000 0000 in binary). The discarded bits on the right are reinserted on the left. The final
result (0100 0000 in binary) is stored in RESULT. Notice that the sign is not preserved in this
operation.

The above example performs a logical right rotation by one position in the VALUE variable whose
initial value is -127 (1000 0001 in binary). The discarded bits on the right are reinserted on the left. The
final result (1100 0000 in binary) is stored in RESULT.

11.10.7.11.4 Logic Shift

11.10.7.11.4.1 ASHL

Block that performs a binary left shift operation in a value passed by Value, storing the result in
Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1369

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value SINT INT DINT Variable to undergo shift

Shift BYTE USINT Shift index

VAR_OUTPUT
ENO BOOL End of operation

Result SINT INT DINT Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of arithmetic left shifts, according to the Shift value.

NOTE!
All arithmetic shifts implemented maintain the sign of the variable.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1370

Description of exemple.

Description of exemple.

11.10.7.11.4.2 ASHR

Block that performs arithmetic left shift operation in a value passed by Value, storing the result in
Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value SINT INT DINT Variable to undergo shift

Shift BYTE USINT Shift index

VAR_OUTPUT
ENO BOOL End of operation

Result SINT INT DINT Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of arithmetic right shifts, according to the Shift value.

Equipments (Devices)

WPS v2.5X | 1371

NOTE!
All arithmetic shifts implemented maintain the sign of the variable.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

The above example performs an arithmetic right shift by three positions in the VALUE variable whose
initial value is 52 (0011 0100 in binary). The bits on the right are being discarded, and on the left new
zeros are inserted. The final result (0000 0110 in binary) is stored in RESULT.

Equipments (Devices)

WPS v2.5X | 1372

The above example performs an arithmetic right shift by two positions in the VALUE variable whose
initial value is -79 (1011 0001 in binary). The bits on the right will be discarded and new ones on the
left are inserted, since the arithmetic right shifts preserve the sign of the variable. The final result
(1111 0110 in binary) is stored in RESULT.

The above example performs an arithmetic right shift by thirteen positions in the VALUE variable
whose initial value is -128 (1000 0000 in binary). The bits on the right are being discarded, and on the
left new ones are inserted. The final result (1111 1111 in binary) is stored in RESULT.

11.10.7.11.4.3 SHL

Block that performs a binary logical left shift operation in a value passed by Value, storing the result
in Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1373

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable to undergo shift

Shift BYTE USINT Shift index

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of logical shifts left, according to the Shift value.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1374

The above example performs a logical right shift by four positions in the VALUE variable whose initial
value is 56 (0011 1000 in binary). The bits on the left are being discarded, and on the left new zeros
are inserted. The final result (0011 1000 0000 in binary) is stored in RESULT.

The above example performs a logical right shift by four positions in the VALUE variable whose initial
value is -56 (1100 1000 in binary). The bits on the left are being discarded, and on the left new zeros
are inserted. The final result (1100 1000 0000 in binary) is stored in RESULT. Since RESULT is SINT
type, it only accepts the first eight bits (1000 0000).

11.10.7.11.4.4 SHR

Block that performs a binary logical right shift operation in a value passed by Value, storing the result
in Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1375

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable to undergo shift

Shift BYTE USINT Shift index

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of logical shifts right, according to the Shift value.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1376

The above example performs a logical right shift by two positions in the VALUE variable whose initial
value is 124 (0111 1100 in binary). The bits on the right are being discarded, and on the left new zeros
are inserted. The final result (0001 1111 in binary) is stored in RESULT.

The above example performs a logical right shift by three positions in the VALUE variable whose initial
value is -98 (1001 1110 in binary). The bits on the right are being discarded, and on the left new zeros
are inserted. The final result (0001 0011 in binary) is stored in RESULT.

11.10.7.12Math

11.10.7.12.1 Math Basic

11.10.7.12.1.1 ABS

Block that calculates the Value module, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Reference variable for the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the absolute value of the

Equipments (Devices)

WPS v2.5X | 1377

Value variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not
set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the absolute value of the VALUE variable whose initial value is -45,
storing the final result, 45, in RESULT.

The above example calculates the absolute value of the VALUE variable whose initial value is -45. The
final result, 128, cannot be stored in RESULT, because it is outside the limits of accepted values by
SINT type. Therefore, RESULT remains unchanged and the output is disabled.

Equipments (Devices)

WPS v2.5X | 1378

11.10.7.12.1.2 ADD

Block that calculates the sum of the values of Value1 and Value2, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First addend of the operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second addend of the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the sum of Value1 and Value2
variables. If no errors, the Done variable is set. If there is any error in the operation, Done is not set,
staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1379

Example

The above example calculates the sum of VALUE 1 and VALUE2 variables, storing the final result in
RESULT.

The above example calculates the sum of VALUE 1 and VALUE2 variables, storing the final result in
RESULT. Notice that the block accepts arguments of both signs.

Equipments (Devices)

WPS v2.5X | 1380

The above example calculates the sum of VALUE1 and VALUE2 variables. The final result -170
cannot be stored in RESULT, because it is outside the limits of accepted values by SINT type.
Therefore, RESULT remains unchanged and the output is disabled.

11.10.7.12.1.3 DIV

Block that calculates the division of the values of Value1 and Value2, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Dividend of the operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Divisor of the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the division of Value1 and
Value2 variables. The value stored will be the exact division if Result is REAL, or, in other cases, only
the quotient. If no errors, the Done variable is set. If there is any error in the operation, Done is not
set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1381

Example

The above example calculates the division of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Since RESULT is SINT type, only the quotient is stored in it.

The above example calculates the division of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Since RESULT is of REAL type, the exact value of the division is stored in it.

Equipments (Devices)

WPS v2.5X | 1382

The above example calculates the division of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Since RESULT is SINT type, only the quotient is stored in it. Notice that the block
accepts arguments of both signs.

The above example calculates the division of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Since VALUE2 is zero, the block generates a runtime error, RESULT remains unchanged
and the output is disabled.

11.10.7.12.1.4 MOD

Block that calculates the remainder of the values of Value1 and Value2, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT
Dividend of the operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT
Divisor of the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT

Variable that stores the result of the

operation

Operation

Equipments (Devices)

WPS v2.5X | 1383

When this block has a TRUE value in EN, it sends to the Result output the remainder of Value1 and
Value2 variables. If no errors, the Done variable is set. If there is any error in the operation, Done is
not set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the remainder of VALUE 1 and VALUE2 variables, storing the final
result in RESULT.

Equipments (Devices)

WPS v2.5X | 1384

The above example calculates the remainder of VALUE 1 and VALUE2 variables, storing the final
result in RESULT. Notice that the block accepts arguments of both signs.

The above example calculates the remainder of VALUE 1 and VALUE2 variables, storing the final
result in RESULT. Since VALUE2 is zero, the block generates a runtime error, RESULT remains
unchanged and the output is disabled.

11.10.7.12.1.5 MUL

Block that calculates the multiplication of the values of Value1 and Value2, storing the result in
Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First factor of the operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second factor of the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

Equipments (Devices)

WPS v2.5X | 1385

When this block has a TRUE value in EN, it sends to the Result output the multiplication of Value1
and Value2 variables. If no errors, the Done variable is set. If there is any error in the operation, Done
is not set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the product of VALUE 1 and VALUE2 variables, storing the final result
in RESULT.

Equipments (Devices)

WPS v2.5X | 1386

The above example calculates the product of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Notice that the block accepts arguments of both signs.

The above example calculates the product of VALUE1 and VALUE2 variables. The final result 224
cannot be stored in RESULT, because it is outside the limits of accepted values by SINT type.
Therefore, RESULT remains unchanged and the output is disabled.

11.10.7.12.1.6 NEG

Block that calculates the opposite (i.e., the product with -1) of a value passed by Value, storing the
result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Reference variable for the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the opposite of the Value
variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not set,
staying in FALSE status, while Result remains with its value unchanged.

Equipments (Devices)

WPS v2.5X | 1387

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the opposite of the VALUE variable whose initial value is 21, storing
the final result, -21, in RESULT.

The above example calculates the opposite of the VALUE variable whose initial value is -56, storing
the final result, 56, in RESULT.

Equipments (Devices)

WPS v2.5X | 1388

]

The above example calculates the opposite of the VALUE variable whose initial value is -128. The final
result, 128, cannot be stored in RESULT, because it is outside the limits of accepted values by SINT
type. Therefore, RESULT remains unchanged and the output is disabled.

11.10.7.12.1.7 SUB

Block that calculates the subtraction between the Value1 and Value2 values, storing the result in
Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Minuend of operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Subtrahend of operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the subtraction of Value1 and
Value2 variables. If no errors, the Done variable is set. If there is any error in the operation, Done is
not set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1389

Example

The above example calculates the subtraction of VALUE 1 and VALUE2 variables, storing the final
result in RESULT.

The above example calculates the subtraction of VALUE 1 and VALUE2 variables, storing the final
result in RESULT. Notice that the block accepts arguments of both signs.

Equipments (Devices)

WPS v2.5X | 1390

The above example calculates the subtraction of VALUE1 and VALUE2 variables. The final result 141
cannot be stored in RESULT, because it is outside the limits of accepted values by SINT type.
Therefore, RESULT remains unchanged and the output is disabled.

11.10.7.12.2 Math Extended

11.10.7.12.2.1 ALOG10

Block that calculates the antilogarithm (exponent with base 10) of the Value value, storing the result
in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the antilogarithm of the Value
variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not set,
staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1391

Example

The above example calculates the antilogarithm of the VALUE variable, storing the final result in
RESULT. The block ends with success and Done output is activated.

The above example calculates the antilogarithm of the VALUE variable, storing the final result in
RESULT. The indicated value is the minimum input value for which the block revolutions a nonzero
result. The block ends with success and Done output is activated.

The above example calculates the antilogarithm of the VALUE variable, storing the final result in

Equipments (Devices)

WPS v2.5X | 1392

RESULT. Below the minimum values cause the block to return a null value. The block ends with
success and Done output is activated.

The above example calculates the antilogarithm of the VALUE variable, storing the final result in
RESULT. The indicated value is the maximum input value for which the block revolutions a valid result.
The block ends with success and Done output is activated.

The above example calculates the antilogarithm of the VALUE variable, storing the final result in
RESULT. Values higher than the maximum cause the block to generate an error, the RESULT output
remains unchanged and Done output is disabled.

11.10.7.12.2.2 EXP

Block that calculates the exponential of the Euler number "and" raised to the value of Value, storing
the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the exponent of the Euler
number "and" raised to the Value variable. If no errors, the Done variable is set. If there is any error in
the operation, Done is not set, staying in FALSE status, while Result remains with its value
unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Equipments (Devices)

WPS v2.5X | 1393

Block Flowchart

Example

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
The block ends with success and Done output is activated.

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
The indicated value is the minimum input value for which the block revolutions a nonzero result. The
block ends with success and Done output is activated.

Equipments (Devices)

WPS v2.5X | 1394

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
Values below the minimum cause the block to return to a null value. The block ends with success
and Done output is activated.

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
The indicated value is the maximum input value for which the block revolutions a valid result. The
block ends with success and Done output is activated.

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
Values higher than the maximum cause the block to generate an error, the RESULT output remains
unchanged and Done output is disabled.

11.10.7.12.2.3 LN

Block that calculates the natural logarithm of the Value value, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the natural logarithm of the
Value variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not
set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Equipments (Devices)

WPS v2.5X | 1395

Block Flowchart

Example

The above example calculates the natural logarithm of the VALUE variable, storing the final result in
RESULT. The block ends with success and Done output is activated.

The above example calculates the natural logarithm of the VALUE variable, storing the final result in
RESULT. The block generates a runtime error, since VALUE has value zero, and Done output is
disabled.

Equipments (Devices)

WPS v2.5X | 1396

11.10.7.12.2.4 LOG10

Block that calculates the common logarithm (base 10) of the Value value, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the common logarithm of the
Value variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not
set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1397

Example

The above example calculates the common logarithm of the VALUE variable, storing the final result in
RESULT. The block ends with success and Done output is activated.

The above example calculates the common logarithm of the VALUE variable, storing the final result in
RESULT. The block generates a runtime error, since VALUE has negative value, and Done output is
disabled.

11.10.7.12.2.5 POW

Block that calculates the value of Value raised to the exponent Power, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value REAL Base of the operation

Power REAL Exponent of the operation

VAR_OUTPUT

Done BOOL End of operation

Result REAL
Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of Value raised to
the exponent Power. If no errors, the Done variable is set. If there is any error in the operation, Done
is not set, staying in FALSE status, while Result remains with its value unchanged.

Equipments (Devices)

WPS v2.5X | 1398

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the value of VALUE raised to the POWER variable, storing the final
result in RESULT. The block ends with success and Done output is activated.

The above example calculates the value of VALUE raised to the POWER variable, storing the final
result in RESULT. The block ends with success and Done output is activated.

Equipments (Devices)

WPS v2.5X | 1399

The above example calculates the value of VALUE raised to the POWER variable, storing the final
result in RESULT. Since the result is higher than the maximum supported by REAL type, the block
generates an error and Done output is disabled.

11.10.7.12.2.6 ROUND

Block that rounds the value of Value, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT

Done BOOL End of operation

Result REAL
Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the rounded value of Value. If
no errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Compatibility

Device Version

PLC300 2.10 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1400

Example

The above example rounds the value of the VALUE variable, storing the final result in RESULT.
Decimals less than 0.5 are discarded. The block ends with success and Done output is activated.

The above example rounds the value of the VALUE variable, storing the final result in RESULT.
Decimals greater than or equal to 0.5 promote unity value immediately above. The block ends with
success and Done output is activated.

11.10.7.12.2.7 SQRT

Block that calculates the square root value of Value, storing the result in Result.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1401

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the square root value of
Value. If no errors, the Done variable is set. If there is any error in the operation, Done is not set,
staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1402

The above example calculates the square root value of the VALUE variable, storing the final result in
RESULT. The block ends with success and Done output is activated.

The above example calculates the square root value of the VALUE variable, storing the final result in
RESULT. The block generates a runtime error, since VALUE has negative value, and Done output is
disabled.

11.10.7.12.2.8 TRUNC

Block that truncates the value of Value, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT

Done BOOL End of operation

Result REAL
Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the truncated value of Value. If
no errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Compatibility

Equipments (Devices)

WPS v2.5X | 1403

Device Version

PLC300 2.10 or higher

SCA06 2.00 or higher

Block Flowchart

Example

The above example truncates the value of the VALUE variable, storing the final result in RESULT.
Decimals are discarded. The block ends with success and Done output is activated.

11.10.7.12.3 Math Trigonometry

11.10.7.12.3.1 ACOS

Block that calculates the arccosine of Value, storing the result in Angle.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1404

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value of cosine

VAR_OUTPUT
Done BOOL End of operation

Angle REAL Value of the angle w hose cosine is equal to Value (in radians)

Operation

When this block has a TRUE value in EN, it sends to the Angle output the arccosine of Value. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Angle remains with its value unchanged.

When EN has FALSE value, Angle remains unchanged and Done remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1405

The above example calculates the arc, in radians, whose cosine is the VALUE variable, storing the
final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the arc, in radians, whose cosine is the VALUE variable, storing the
final result in RESULT. The block generates a runtime error, since VALUE has value inferior to 1, and
Done output is disabled.

11.10.7.12.3.2 ASIN

Block that calculates the arcsine of Value, storing the result in Angle.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value of sine

VAR_OUTPUT
Done BOOL End of operation

Angle REAL Value of the angle w hose sine is equal to Value (in radians)

Operation

When this block has a TRUE value in EN, it sends to the Angle output the arcsine of Value. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Angle remains with its value unchanged.

When EN has FALSE value, Angle remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1406

Example

The above example calculates the arc, in radians, whose sine is the VALUE variable, storing the final
result in RESULT. The block ends with success and Done output is activated.

The above example calculates the arc, in radians, whose sine is the VALUE variable, storing the final
result in RESULT. The block generates a runtime error, since VALUE has value superior to 1, and
Done output is disabled.

Equipments (Devices)

WPS v2.5X | 1407

11.10.7.12.3.3 ATAN

Block that calculates the arctangent of Value, storing the result in Angle.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value of tangent

VAR_OUTPUT
Done BOOL End of operation

Angle REAL Value of the angle w hose tangent is equal to Value (in radians)

Operation

When this block has a TRUE value in EN, it sends to the Angle output the arctangent of Value. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Angle remains with its value unchanged.

When EN has FALSE value, Angle remains unchanged and Done remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1408

The above example calculates the arc, in radians, whose tangent is the VALUE variable, storing the
final result in RESULT. The arc, for positive values, is always in the first quadrant. The block ends with
success and Done output is activated.

The above example calculates the arc, in radians, whose tangent is the VALUE variable, storing the
final result in RESULT. The arc, for negative values, is always in the fourth quadrant. The block ends
with success and Done output is activated.

11.10.7.12.3.4 ATAN2

Block that calculates the arctangent of Y/X, storing the result in Angle.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

X REAL Parameter X of the function

Y REAL Parameter Y of the function

VAR_OUTPUT
Done BOOL End of operation

Angle REAL Value of the angle w hose tangent is equal to (Y/X) (in radians)

Operation

When this block has a TRUE value in EN, it sends to the Angle output the arctangent of Y/X. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Angle remains with its value unchanged.

When EN has FALSE value, Angle remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1409

Example

The above example calculates the arc, in radians, whose tangent is the Y/X variable, storing the final
result in RESULT. The arc, for positive values of X and Y, is always in the first quadrant. The block
ends with success and Done output is activated.

The above example calculates the arc, in radians, whose tangent is the Y/X variable, storing the final

Equipments (Devices)

WPS v2.5X | 1410

result in RESULT. The arc, for negative values of X and positive values of Y, is always in the second
quadrant. The block ends with success and Done output is activated.

The above example calculates the arc, in radians, whose tangent is the Y/X variable, storing the final
result in RESULT. The arc, for negative values of X and Y, is always in the third quadrant. The block
ends with success and Done output is activated.

The above example calculates the arc, in radians, whose tangent is the Y/X variable, storing the final
result in RESULT. The arc, for positive values of X and negative values of Y, is always in the fourth
quadrant. The block ends with success and Done output is activated.

11.10.7.12.3.5 COS

Block that calculates the cosine of Angle, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Angle REAL Angle (in radians)

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the cosine of Angle. If no

Equipments (Devices)

WPS v2.5X | 1411

errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the cosine of the VALUE variable, interpreted in radians, storing the
final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the cosine of the VALUE variable, interpreted in radians, storing the
final result in RESULT. The block ends with success and Done output is activated. Notice that the
block accepts negative input values and greater than one turn.

Equipments (Devices)

WPS v2.5X | 1412

11.10.7.12.3.6 SIN

Block that calculates the sine of Angle, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Angle REAL Angle (in radians)

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the sine of Angle. If no errors,
the Done variable is set. If there is any error in the operation, Done is not set, staying in FALSE
status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1413

The above example calculates the sine of the VALUE variable, interpreted in radians, storing the final
result in RESULT. The block ends with success and Done output is activated.

The above example calculates the sine of the VALUE variable, interpreted in radians, storing the final
result in RESULT. The block ends with success and Done output is activated. Notice that the block
accepts negative input values.

The above example calculates the sine of the VALUE variable, interpreted in radians, storing the final
result in RESULT. The block ends with success and Done output is activated. Notice that the block
accepts values greater than one full turn.

11.10.7.12.3.7 TAN

Block that calculates the tangent of Angle, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Angle REAL Angle (in radians)

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

Equipments (Devices)

WPS v2.5X | 1414

When this block has a TRUE value in EN, it sends to the Result output the tangent of Angle. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the tangent of the VALUE variable, interpreted in radians, storing the
final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the tangent of the VALUE variable, interpreted in radians, storing the
final result in RESULT. The block ends with success and Done output is activated. Notice that the
block accepts negative input values and greater than one turn.

Equipments (Devices)

WPS v2.5X | 1415

11.10.7.12.4 Math Util

11.10.7.12.4.1 MAX

Block that compares the values of Value1 and Value2 and stores the highest of them in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Highest of the values compared

Operation

When this block has a TRUE value in EN, it sends to the Result output the highest value in the
comparison between Value1 and Value2. If no errors, the Done variable is set. If there is any error in
the operation, Done is not set, staying in FALSE status, while Result remains with its value
unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1416

Example

The above example calculates the maximum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the maximum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. The block ends with success and Done output is activated. Notice that the
types of the input variables can be different without causing execution problems.

Equipments (Devices)

WPS v2.5X | 1417

The above example calculates the maximum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. Since the result is higher than the maximum supported by SINT type, the
block generates an error and Done output is disabled.

11.10.7.12.4.2 MIN

Block that compares the values of Value1 and Value2 and stores the lowest of them in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Low est of the values compared

Operation

When this block has a TRUE value in EN, it sends to the Result output the lowest value in the
comparison between Value1 and Value2. If no errors, the Done variable is set. If there is any error in
the operation, Done is not set, staying in FALSE status, while Result remains with its value
unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1418

Example

The above example calculates the minimum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the minimum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. The block ends with success and Done output is activated. Notice that the
types of the input variables can be different without causing execution problems.

Equipments (Devices)

WPS v2.5X | 1419

The above example calculates the minimum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. Since the result is lower than the minimum supported by SINT type, the
block generates an error and Done output is disabled.

11.10.7.12.4.3 SAT

Block that performs a routine for saturation of the value found in Value in accordance with the limits
for Minimum and Maximum, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Reference value

Minimum
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Inferior saturation value

Maximum
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Superior saturation value

VAR_OUTPUT

Q BOOL
Indicator that there w as saturation in the

process

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Result of operation

Operation

When this block has a TRUE value in EN, it performs a comparison between Value and Minimum and
Maximum. If Value is in the range between Minimum and Maximum, Result receives the value of
Value and Q remains FALSE. If Value is higher than Maximum, Result receives Maximum and Q
receives TRUE. If Value is lower than Minimum, Result receives Minimum and Q receives TRUE. If
there is any error in the operation, Q is not set, staying in FALSE status, while Result remains with
its value unchanged.

Equipments (Devices)

WPS v2.5X | 1420

When EN has FALSE value, Result remains unchanged and Q remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1421

The above example passes the VALUE value to RESULT, since it is not lower than MINIMUM or
higher than MAXIMUM. The block ends successfully and the Q output is disabled, since there was no
saturation.

The above example passes the MAXIMUM to RESULT, since VALUE is higher than MAXIMUM. The
block ends successfully and the Q output is activated, since there was saturation.

The above example passes the MINIMUM to RESULT, since VALUE is lower than MINIMUM. The
block ends successfully and the Q output is activated, since there was saturation.

Equipments (Devices)

WPS v2.5X | 1422

The above example passes the MAXIMUM value to RESULT, since VALUE is higher than MAXIMUM.
The block ends successfully and the Q output is activated, since there was saturation.

11.10.7.13Module

11.10.7.13.1 CALL

Block that loads a file and do a ladder call.

Ladder Representation

Block Structure

Variable Type Name Data type Description

VAR_INPUT

EN BOOL Block enabling

FILENAME# STRING
Ladder f ile name (POU) enclosed in gingle

quotation marks

VAR_OUTPUT ENO BOOL End of operation

VAR CALL_INST_0 CALL Instance of access to block structure

Operation

When this block has a TRUE value in EN, it updates the values of internal fields with the input
variables, performs the Ladder routine loading the file and updates the values of the outputs after
completing routine.

When EN has FALSE value, outputs remain unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Compatibility

Equipments (Devices)

WPS v2.5X | 1423

Device Version

PLC300 4.03 or higher

Block Flowchart

Example

In the example below, the POU 'Program2' will be executed through the 'Main Ladder'.

11.10.7.13.2 USERFB

Block that performs a subroutine programmed by the user.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1424

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

INPUT
Conforme programação

do usuário
Block inputs

VAR_OUTPUT

ENO BOOL End of operation

OUTPUT
Conforme programação

do usuário
Block outputs

VAR_IN_OUT IN_OUT
Conforme programação

do usuário
Block inputs/outputs

VAR MYUSERFB_INST_0 MYUSERFB Instance of access to block structure

Operation

When this block has a TRUE value in EN, it updates the values of internal fields with the input
variables, performs the Ladder routine programmed by the user and updates the values of the outputs
after completing routine.

When EN has FALSE value, outputs remain unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

NOTE!
Refer to section Working with USERFBs for further information.

Compatibility

Device Version

PLC300 1.50 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1425

11.10.7.13.3 Working with USERFBs

11.10.7.13.3.1 Creating USERFBs

USERFBs are cuser-customizable functional blocks. Its utilization is encouraged to make the Ladder program
less bulky and polluted, abstracting information with which one does not want to work often and systematizing
complex tasks.

In these blocks, the inputs and outputs are defined by the user, who handles them in the Ladder diagram
associated with the block. Here's how to create your USERFB.

1. In the Projects window, locate the resource in which you want to create the USERFB, right-click in User
Function Block and click in New Folder.

Equipments (Devices)

WPS v2.5X | 1426

2. In the wizard, insert a name for the library to which the USERFB will belong and click Next.

3. Insert a valid name for the USERFB and click Next.

4. If you want to insert a password to protect the block code, check the Encrypt binary checkbox and type a
password. Otherwise, uncheck it. Click Finish.

Equipments (Devices)

WPS v2.5X | 1427

That's it! The USERFB has been succesfully created. You should see the following in the Projects window.

11.10.7.13.3.2 Adding input/output

Now we'll cover how to create inputs and outputs for the USERFB.

1. In the Projects window, double click the USERFB file in order to open its Ladder editor.

Equipments (Devices)

WPS v2.5X | 1428

2. In the Window menu, click Variables.

Analysing the following figure, we see that the USERFB Variables window is different from other Ladder files.
It has only volatile and retain variables in LOCAL scope, which are the internal variables of the block, used in
its subroutine. Besides these, it has three more groups: VAR_IN, VAR_OUT and VAR_IN_OUT.

VAR_IN: internal variables that repersent the input arguments for that block.
VAR_OUT: internal variables that repersent the output arguments for that block.
VAR_IN_OUT: internal variables that repersent the input/output arguments for that block.

3. In order to create an input, click in the VAR_IN tab and click in the symbol. In the window, set a name
and a datatype to this variable and click OK.

Equipments (Devices)

WPS v2.5X | 1429

4. In order to create an output, click in the VAR_OUT tab and click in the symbol. In the window, set a
name and a datatype to this variable and click OK.

5. In order to create an input/output, click in the VAR_IN_OUT tab and click in the symbol. In the window,
set a name and a datatype to this variable and click OK.

Equipments (Devices)

WPS v2.5X | 1430

11.10.7.13.3.3 Editing the Ladder

Now we'll cover how to edit the USERFB subroutine.

1. In the Projects window, double click the USERFB file in order to open its Ladder editor.

The Ladder Editor will open, like any other Ladder diagram. Any block may be inserted in it, including other
USERFBs. Remember that only local variables may be used in it.

Equipments (Devices)

WPS v2.5X | 1431

11.10.7.13.3.4 Using USERFBs

Lastly we'll cover how to make use of the USERFB, inserting it in other Ladder diagrams.

1. In the Projects window, double click the USERFB file in order to open its Ladder editor.

2. In the Pallete window, select the USERFB block from the Module category and drag it to the position
where you want to use it in the Ladder diagram.

3. Double click the question marks (???) above the block in order to insert a instance variable for the
USERFB. Type in the variable name and click Edit. In the confirmation dialog, click Yes to create the new
variable.

Equipments (Devices)

WPS v2.5X | 1432

4. In the Add dialog, type in a name for the variable and select its parameters. In the Datatype field, choose
the name of the desired USERFB (if there is only one, the field will not be enabled).
For example, if your USERFB name is MYUSERFB, the correct datatype to be selected is
$USERFB_MYUSERFB.

That's it! Your very own USERFB is inserted in the diagram and ready to work!

11.10.7.14Motion Control

11.10.7.14.1 Motion Control Cam

11.10.7.14.1.1 MC_CamIn

Block responsible for the execution of a defined positioning a cam table of a curve CAM.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1433

Execution Features

Program Memory Size 92 Bytes

Data Memory Size 52 Bytes

Block Structure

Equipments (Devices)

WPS v2.5X | 1434

Variable Type Name Data Type Description

VAR_IN_OUT

Master BYTE

Selection of operation master

(0 - Fast digital inputs)

(1 - CANopen)

(2 - Encoder 1)

(3 - Virtual Axis)

(4 - Encoder 2)

Slave BYTE
Selection of operation slave

(0 - Real axis)

VAR_INPUT

Execute BOOL Block enabling

MasterScaling REAL Gain in the position values of the master axis.

SlaveScaling REAL Gain in the position values of the slave axis.

MasterSyncPosition LREAL
Position of the master axis w here the slave w ill start the

CAM curve.

CamTableID WORD Selected CAM table

BufferMode BYTE

Execution start mode

(0 - Starts block immediately, if there is another block in

the execution it w ill be aborted)

(1 - When another block is in execution, the block in

execution w ill continue its motion until the end and this

new block w ill w ait to be executed.)

(6 – If another block is in execution, this block w ill go

into error 52 and w ill not be executed. The HMI w ill

show the alarm A00052.)

VAR_OUTPUT

InSync BOOL Output enabling

Busy BOOL Flag indicating the block has not yet been ended

Active BOOL Block f lag w ith control on the axis

CommandAborted BOOL Flag of aborted command

Error BOOL Error in the execution f lag

ErrorID WORD Identif ier of the occurred error

EndOfProfile BOOL End of the CAM profile f lag

VAR MC_CAMIN_INST_0 MC_CAMIN Instance of access to block structure

Operation

When this block detects a leading edge in Execute, it sends a command for the drive to execute a
defined positioning by CamTableID.

When Execute has FALSE value, Done remains FALSE. The Done output is activated when the block
finishes the execution successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Equipments (Devices)

WPS v2.5X | 1435

Code Description

52
Attempt to execute block w ith BufferMode in Single

w hen another block is active.

67 Drive in the "Disabled" or “Errorstop” status.

69 Drive in the "Stopping" status.

70

Attempt to execute block w ith BufferMode in

Buffered w hen another block is active and another

block is w aiting.

71 P202 different from 4.

74 Drive in the "Homing" status.

78 MC block not executed – Internal fault.

85 CamTableID not valid.

Example

Equipments (Devices)

WPS v2.5X | 1436

Equipments (Devices)

WPS v2.5X | 1437

In the up transition of CAMCALC_EXECUTE, the MW_CamCalc block is executed and the cam table
of NUM_OF_TABLE will be calculated according to the block arguments.

When the calculation of cam table 11 is finished, the InSync output is set while the Execute input
remains set.

With the CAMCALC_DONE set, the MC_CamIn block can be executed.

In the up transition of CAMIN1_EXECUTE, the first MC_CamIn block is executed.

If it is necessary to adjust the cam table of the CAM curve, just make the adjustment in MASTER_PT
[0], MASTER_PT[1], SLAVE_PT[0] and SLAVE_PT[1], change the content of NUM_OF_TABLE to 12
and execute the MW_CamCalc block again.

In the transition of CAMIN2_EXECUTE, the second MC_CamIn block will be executed (without losing
the position of the master axis) as soon as the first MC_CamIn block finishes executing the curve in
execution.

11.10.7.14.1.2 MC_CamOut

Block responsible for the completion of a synchronization established by a block MC_CamIn.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1438

Execution Features

Program Memory Size 28 Bytes

Data Memory Size 4 Bytes

Block Structure

Variable Type Name Data Type Description

VAR_IN_OUT Slave BYTE
Selection of operation slave

(0 - Real axis)

VAR_INPUT

Execute BOOL Block enabling

CamTableID WORD Selected CAM table

BufferMode BYTE

Execution start mode

(0 - Starts block immediately, if there is another block in

the execution it w ill be aborted)

(1 - When another block is in execution, the block in

execution w ill continue its motion until the end and this

new block w ill w ait to be executed.)

(6 – If another block is in execution, this block w ill go into

error 52 and w ill not be executed. The HMI w ill show the

alarm A00052.)

VAR_OUTPUT

Done BOOL Output enabling

Busy BOOL Flag indicating the block has not yet been ended

Error BOOL Error in the execution f lag

ErrorID WORD Identif ier of the occurred error

VAR MC_CAMOUT_INST_0 MC_CAMOUT Instance of access to block structure

Operation

When this block detects a leading edge in Execute it concludes the existing synchronism for the last
execution of a block MC_CamIn. The axis will keep the speed of the moment in which the block is
executed.

When Execute has FALSE value, Done remains FALSE. The Done output is activated when the block
finishes the execution successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Code Description

67 Drive in the "Disabled" or “Errorstop” status.

71 P202 different from 4.

73 Drive is not in the “Synchronized Motion” status

78 MC block not executed – Internal fault.

Example

Equipments (Devices)

WPS v2.5X | 1439

In the up transition of CAMOUT_EXECUTE, the MC_CamOut block is executed. With this, the Busy
and Active signals of this block are set and synchronism started by other CAM blocks ends. When
the process finishes, the Done output of the block is set and remains TRUE while the Execute input
is set.

11.10.7.14.1.3 MC_CamTableSelect

Block that selects a cam table of a CAM curve previously programmed through the tool CAM Profiles.

Ladder Representation

Execution Features

Program Memory Size 44 Bytes

Data Memory Size 16 Bytes

Block Structure

Equipments (Devices)

WPS v2.5X | 1440

Variable Type Name Data Type Description

VAR_IN_OUT

Master BYTE

Selection of operation master

(0 - Fast digital inputs)

(1 - CANopen)

(2 - Encoder 1)

(3 - Virtual Axis)

(4 - Encoder 2)

Slave BYTE
Selection of operation slave

(0 - Real axis)

CamTable WORD CAM table code

VAR_INPUT

Execute BOOL Block enabling

Periodic BOOL

Control of the request execution

(0 - Single execution)

(1 - Periodic execution)

VAR_OUTPUT

Done BOOL Output enabling

Busy BOOL
Flag indicating the block has not yet been

ended

Error BOOL Error in the execution f lag

ErrorID WORD Identif ier of the occurred error

CamTableID WORD Selected CAM table

VAR
MC_CAMTABLESELECT

_INST_0
MC_CAMTABLESELECT Instance of access to block structure

Operation

When this block detects a leading edge in Execute, it searches the specified table in CamTable so
that it can be used by the MC_CamIn block.

When Execute has FALSE value, Done remains FALSE. The Done output is activated when the block
finishes the execution successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Code Description

83 Invalid f ile of the CAM curve cam table.

84 Invalid Cam Table. Cam Table must be from 1 to 10.

Example

Equipments (Devices)

WPS v2.5X | 1441

In the up transition of CAMSEL_EXECUTE the MC_CamTableSelect block is executed and, thus, the
cam table selected in CAM_INDEX can be used by the MC_CamIn block.
To execute the block, the Done output and CAMSEL_DONE are set and remain at TRUE level while
the Execute input is set.
In this example, CAMSEL_DONE ensures that the MC_CamIn block will not be activated before the
MC_CamTableSelect block is executed successfully.

11.10.7.14.1.4 MW_CamCalc

This block calculates a cam table of the CAM curve.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1442

Execution Features

Program Memory Size 66 Bytes

Data Memory Size 24 Bytes

Block Structure

Variable Type Name Data Type Description

VAR_IN_OUT

Master BYTE

Selection of operation master

(0 - Fast digital inputs)

(1 - CANopen)

(2 - Encoder 1)

(3 - Virtual Axis)

(4 - Encoder 2)

Slave BYTE
Selection of operation slave

(0 - Real axis)

CamTable WORD CAM table code

VAR_INPUT

Execute BOOL Block enabling

NumberOfPoints WORD Number of points of the table

MasterPoints LREAL Points of the master

SlavePoints LREAL Points of the slave

CurveType WORD Type of curve

Periodic BOOL

Control of the request execution

(0 - Single execution)

(1 - Periodic execution)

VAR_OUTPUT

InSync BOOL Output enabling

Busy BOOL Flag indicating the block has not yet been ended

Error BOOL Error in the execution f lag

ErrorID WORD Identif ier of the occurred error

CamTableID WORD Selected CAM table

VAR MW_CAMCALC_INST_0 MW_CAMCALC Instance of access to block structure

Operation

When this block detects a leading edge in Execute, it builds the specified table in CamTable with the

Equipments (Devices)

WPS v2.5X | 1443

programmed data so that it can be used by the MC_CamIn block.

When Execute has FALSE value, Done remains FALSE. The Done output is activated when the block
finishes the execution successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Code Description

83 Invalid f ile of the CAM curve cam table.

84 Invalid Cam Table. Cam Table must be from 11 to 20.

86
Number of points above the programmed in the CAM

PROFILES configurator.

87

Invalid position of the master axis. The position of the

master axis must be greater than the position of the

previous point.

88
MW_CamCalc block in execution. Is only allow ed the

execution of an MW_CamCalc block at a time.

89 Cam table in use by the MC_CamIn block.

90
Double marker w ith position of the nonexistent

master axis.

91
Double marker w ith position of the nonexistent slave

axis.

92 Word marker w ith nonexistent curve type.

Example

Equipments (Devices)

WPS v2.5X | 1444

Equipments (Devices)

WPS v2.5X | 1445

Equipments (Devices)

WPS v2.5X | 1446

In the transition from 0 to 1 of bit marker CAMCALC_EXECUTE, the MW_CamCalc block is executed
and the cam table of TABLE will be calculated according to the block arguments.

In this example, the number of points of the curve will be contents of the NUM_POINTS, the position
of the master axis will be in accordance with the contents of MASTER_POINTS [0] and
MASTER_POINTS [1], the position of the slave axis will be in accordance with the contents of
SLAVE_POINTS [0] and SLAVE_POINTS [1] and the type of curve will be in accordance with the
contents of CURVE_TYPE [0] and CURVE_TYPE[1].

Entering the same values in the tool, we can observe the curve below:

When the calculation of the cam table 11 is finished, the InSync output is set while the Execute input
remains set.
With the CAMCALC_DONE set, the MC_CamIn block can be executed.

11.10.7.14.2 Motion Control Command

11.10.7.14.2.1 MC_Power

Block responsible for enabling/disabling the drive axis.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1447

Execution Features

Program Memory Size 40 Bytes

Data Memory Size 4 Bytes

Block Structure

Variable Type Name Data Type Description

VAR_IN_OUT Axis BYTE
Selection of operation axis

(0 - Real axis)

VAR_INPUT Enable BOOL Block enabling

VAR_OUTPUT

Status BOOL Output enabling

Valid BOOL Flag indicating validity of the output signals

Error BOOL Error in the execution f lag

ErrorID WORD Identif ier of the occurred error

VAR MC_POWER_INST_0 MC_POWER Instance of access to block structure

Operation

This block performs an Enable/Disable command of the Axis axis according to the Enable input,
disabling it Enable is FALSE and enabling if Enable is TRUE.

NOTE!
When the MC_Power block is used to enable/disable the real axis, no digital inputs must be
programmed for the Enable function (option 1), or an Alarm A0120 may occur.

When enabling the real axis for the first time, the drive may operate in grid position, depending on the
value of parameter P0773. The position proportional gain (P0159) must be set to obtain a better drive
performance.

When the real axis is disabled, the axis status will be Disabled. When enabling the real axis, the axis
status will change to Standstill.

When EN has FALSE value, Status remains FALSE. The Status output is activated when the block
finishes the execution successfully, remaining at TRUE level until Enable receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Equipments (Devices)

WPS v2.5X | 1448

Code Description

66 Drive in the "ErrorStop" status.

71 P202 different from 4.

Example

Equipments (Devices)

WPS v2.5X | 1449

On the leading edge of POWER_COMMAND, the real axis is enabled and its status, the system
marker REAL_AXIS_STATUS (%SW6004), is changed to Standstill (%SW6004 = 2). The Status
output is set.

After the transition from 0 to 1 of MOTION_COMMAND, the MC_MotionAbsolut block is executed and
the positioning for the position 10 revolutions starts. The axis status is changed to “Discrete
Motion” (%SW3406 = 6).

While positioning is executed, POWER_COMMAND is reset. Since the BufferMode of the MC_Power
is set to Buffered, the axis will be disabled only in the positioning completion.

When the positioning is finished, the Done output of the MC_MotionAbsolut block is set for 1 scan
cycle and the axis is disabled (MC_Power.Enable = 0). The axis status changes to “Disable” (%
SW6004 = 0).

11.10.7.14.2.2 MC_Reset

Block responsible for cleaning up the failure status of drive.

Ladder Representation

Execution Features

Equipments (Devices)

WPS v2.5X | 1450

Program Memory Size 28 Bytes

Data Memory Size 4 Bytes

Block Structure

Variable Type Name Data Type Description

VAR_IN_OUT Axis BYTE
Selection of operation axis

(0 - Real axis)

VAR_INPUT Execute BOOL Block enabling

VAR_OUTPUT

Done BOOL Output enabling

Error BOOL Error in the execution f lag

ErrorID WORD Identif ier of the occurred error

VAR MC_RESET_INST_0 MC_RESET Instance of access to block structure

Operation

When this block detects a leading edge in Execute, it performs cleanliness in the drive status,
changing it from Errorstop to Disabled.

When Execute has FALSE value, Done remains FALSE. The Done output is activated when the block
finishes the execution successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Code Description

71 P202 different from 4.

Example

Equipments (Devices)

WPS v2.5X | 1451

If a fault occurs on the drive, the axis status will change to “Errorstop” (%SW6004 = 1).
When an up transition of RESET_COMMAND occurs, the MC_Reset block will be executed and axis
status will change to Disabled (SW6004 = 0%). The Done output will remain set while the Execute
input is TRUE level.

11.10.7.14.2.3 MC_Stop

Block responsible for executing a controlled stop.

Ladder Representation

Execution Features

Program Memory Size 52 Bytes

Data Memory Size 12 Bytes

Block Structure

Equipments (Devices)

WPS v2.5X | 1452

Variable Type Name Data Type Description

VAR_IN_OUT Axis BYTE
Selection of operation axis

(0 - Real axis)

VAR_INPUT

Execute BOOL Block enabling

Deceleration REAL Deceleration of the stop

Jerk REAL Jerk

VAR_OUTPUT

Done BOOL Output enabling

Busy BOOL Flag indicating the block has not yet been ended

Active BOOL Block f lag w ith control on the axis

CommandAborted BOOL Flag of aborted command

Error BOOL Error in the execution f lag

ErrorID WORD Identif ier of the occurred error

VAR MC_STOP_INST_0 MC_STOP Instance of access to block structure

Operation

When this block detects a leading edge in Execute, it sends a command for a controlled stop of the
axis. While Execute has TRUE level, no other MC block is executed.

When the MC_Stop block is executed, the drive will star operating in grid position and remain this
way even after the conclusion of the block. The position proportional gain must be set (P0159) so as
to obtain a better drive performance.

In the execution of the block, the axis status will change to Stopping. When the stop is ended and
the block is no longer active, the axis status will change to Standstill.

When Execute has FALSE value, Done remains FALSE. The Done output is activated when the block
finishes the execution successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Code Description

64
Deceleration programmed below the minimum

allow ed.

65
Deceleration programmed above the maximum

allow ed.

67 Drive in the "Disabled" or “Errorstop” status.

71 P202 different from 4.

78 MC block not executed – Internal fault.

93 Jerk programmed below the minimum allow ed.

94 Jerk programmed above the maximum allow ed.

Example

Equipments (Devices)

WPS v2.5X | 1453

Equipments (Devices)

WPS v2.5X | 1454

In the up transition of MOTION_COMMAND, the MC_MotionVelocity block is executed. With this, the
Busy and Active signals of this block are set and the motion to reach the speed of 200 RPM starts.
The axis status (%SW6004) changes from Standstill (2) to Continuous Motion (5).
At the moment the speed reaches 200 rpm, MOTION_RESULT is set.

With the up transition of STOP_COMMAND, the MC_Stop block is instantly executed; thus, the
Busy and Active signals of this block are set and the stop starts. At the same time, the Busy, Active
and InVelocity signals of the MC_MotionVelocity block are reset and the CommandAborted signal is
set for 1 scan. The axis status (%SW6004) changes from Continuous Motion (5) to Stopping (3).

Equipments (Devices)

WPS v2.5X | 1455

At the end of the stop, the Done output MC_Stop block is set and remains until Execute input is
reset. The axis status (%SW6004) remains equal to Stopping (3) and no other MC block will be
executed.

With the transition of rising of MOTION_COMMAND, the MC_MotionVelocity block is started, but as
the MC_Stop block is active, an error occurs and the Error signal will be set by entering the value 69
in ErrorID.

When the Execute input of the MC_Stop block is reset, the Busy, Active and Done signal are reset.
The axis status (%SW6004) changes from Stopping (3) to Standstill (2) and other MCs blocks can be
executed.

11.10.7.14.2.4 MW_IqControl

Block conducting the Iq control programmed.

Ladder Representation

Execution Features

Program Memory Size 78 Bytes

Data Memory Size 32 Bytes

Block Structure

Equipments (Devices)

WPS v2.5X | 1456

Variable Type Name Data Type Description

VAR_IN_OUT Axis BYTE
Selection of operation axis

(0 - Real axis)

VAR_INPUT

Execute BOOL Block enabling

ContinuousUpdate BYTE

Automatic update mode

(0 – Leading edge)

(1 – Real time)

Iq REAL lq Value

IqRamp REAL Iq ramp value

BufferMode BYTE

Execution start mode

(0 - Starts block immediately, if there is another

block in the execution it w ill be aborted)

(1 - When another block is in execution, the block in

execution w ill continue its motion until the end and

this new block w ill w ait to be executed.)

(6 – If another block is in execution, this block w ill

go into error 52 and w ill not be executed. The HMI

w ill show the alarm A00052.)

VAR_OUTPUT

InIq BOOL Output enabling

Busy BOOL Flag indicating the block has not yet been ended

Active BOOL Block f lag w ith control on the axis

CommandAborted BOOL Flag of aborted command

Error BOOL Error in the execution f lag

ErrorID WORD Identif ier of the occurred error

VAR MW_IQCONTROL_INST_0 MW_IQCONTROL Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it sends an execution command of the lq control
according to the programmed parameters.

In the execution of the block the axis status will change to Continuous Motion. It order to finish the
block, it is necessary to execute another block or the changing of the drive to the Disable or Errorstop
status.

When Execute has FALSE value, Done remains FALSE. The Done output is activated when the block
finishes the execution successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Equipments (Devices)

WPS v2.5X | 1457

Code Description

52
Attempt to execute block w ith BufferMode in Single

w hen another block is active.

67 Drive in the "Disabled" or “Errorstop” status.

69 Drive in the "Stopping" status.

70

Attempt to execute block w ith BufferMode in

Buffered w hen another block is active and another

block is w aiting.

71 P202 different from 4.

74 Drive in the "Homing" status.

78 MC block not executed – Internal fault.

80 Iq programmed above the maximum allow ed.

81 IqRamp programmed below the minimum allow ed.

82 IqRamp programmed above the maximum allow ed.

Example

In the up transition of IQCONTROL_EXECUTE, the MW_IqControl block is executed. With this, the
Busy and Active signals of this block are set and starts the execution of Iq control according to
parameters set. When the process finishes, the Done output of the block is set and remains TRUE
while the Execute input is set.

11.10.7.14.3 Motion Control Gear

11.10.7.14.3.1 MC_GearIn

Block responsible for execution of the synchronism in speed between the programmed axes.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1458

Execution Features

Program Memory Size 74 Bytes

Data Memory Size 28 Bytes

Block Structure

Equipments (Devices)

WPS v2.5X | 1459

Variable Type Name Data Type Description

VAR_IN_OUT

Master BYTE

Selection of operation master

(0 - Fast digital inputs)

(1 - CANopen)

(2 - Encoder 1)

(3 - Virtual Axis)

(4 - Encoder 2)

Slave BYTE
Selection of operation slave

(0 - Real axis)

VAR_INPUT

Execute BOOL Block enabling

RatioNumerator INT Numerator of the synchronism ratio

RatioDenominator WORD Denominator of the synchronism ratio

Acceleration REAL Acceleration

Deceleration REAL Deceleration

BufferMode BYTE

Execution start mode

(0 - Starts block immediately, if there is another block in

the execution it w ill be aborted)

(1 - When another block is in execution, the block in

execution w ill continue its motion until the end and this

new block w ill w ait to be executed.)

(6 – If another block is in execution, this block w ill go into

error 52 and w ill not be executed. The HMI w ill show the

alarm A00052.)

VAR_OUTPUT

InGear BOOL Output enabling

Busy BOOL Flag indicating the block has not yet been ended

Active BOOL Block f lag w ith control on the axis

CommandAborted BOOL Flag of aborted command

Error BOOL Error in the execution f lag

ErrorID WORD Identif ier of the occurred error

VAR MC_GEARIN_INST_0 MC_GEARIN Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it sends a command for synchronism in speed
between the programmed axes.

For the slave axis to reach the speed of the master axis, a motion will be performed with an
acceleration/deceleration configured in the “Acceleration” and “Deceleration” arguments. The motion
direction will depend on the signal of the RatioNumerator. If RatioNumerator is greater than zero, the
motion will be in the same direction as the master axis, and if the RatioNumerator is smaller than
zero, the motion will be in the opposite the direction of the master axis.

The InGear output is activated when the sync is achieved. It order to finish the block, it is necessary
to execute another block or the changing of the drive to the Disabled or Errorstop status.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Equipments (Devices)

WPS v2.5X | 1460

Code Description

52
Attempt to execute block w ith BufferMode in Single

w hen another block is active.

62
Acceleration programmed below the minimum

allow ed.

63
Acceleration programmed above the maximum

allow ed.

64
Deceleration programmed below the minimum

allow ed.

65
Deceleration programmed above the maximum

allow ed.

67 Drive in the "Disabled" or “Errorstop” status.

69 Drive in the "Stopping" status.

70

Attempt to execute block w ith BufferMode in

Buffered w hen another block is active and another

block is w aiting.

71 P202 different from 4.

72 Invalid synchronism ratio.

74 Drive in the "Homing" status.

78 MC block not executed – Internal fault.

Example

Equipments (Devices)

WPS v2.5X | 1461

In the up transition of GEARIN1_EXECUTE, the first MC_GearIn block is executed. With this the
Busy Active and this block signals are set and the search of synchronization with the configured

Equipments (Devices)

WPS v2.5X | 1462

acceleration begins. As the ratio configured is 1:2 and the master axis is at 200 RPM, the slave axis
must reach 100 RPM to establish the synchronism.
At the moment in which the speed reaches 100 RPM, the InGear output is set.

With the transition of rising GEARIN2_EXECUTE, the second MC_GearIn block is instantly executed.
With this the Busy Active signals of this block are set and the search of synchronization with the
configured acceleration begins. As the ratio configured is 1:4 and the master axis is at 200 RPM, the
slave axis must reach 50 RPM to establish the synchronism. At the same time, the Busy, Active
and InGear signals of the first block are reset and the CommandAborted signal is set for 1 scan.

When the speed of 50 RPM is reached, the InGear output of the second block is set and remains
until the execution of other block.

11.10.7.14.3.2 MC_GearInPos

Block responsible for execution of the synchronism in position between the programmed axes.

Ladder Representation

Execution Features

Program Memory Size 104 Bytes

Data Memory Size 56 Bytes

Block Structure

Equipments (Devices)

WPS v2.5X | 1463

Variable Type Name Data Type Description

VAR_IN_OUT

Master BYTE

Selection of operation master

(0 - Fast digital inputs)

(1 - CANopen)

(2 - Encoder 1)

(3 - Virtual Axis)

(4 - Encoder 2)

Slave BYTE
Selection of operation slave

(0 - Real axis)

VAR_INPUT

Execute BOOL Block enabling

RatioNumerator INT Numerator of the synchronism ratio

RatioDenominator WORD Denominator of the synchronism ratio

Acceleration REAL Acceleration

Deceleration REAL Deceleration

BufferMode BYTE

Execution start mode

(0 - Starts block immediately, if there is another

block in the execution it w ill be aborted)

(1 - When another block is in execution, the block in

execution w ill continue its motion until the end and

this new block w ill w ait to be executed.)

(6 – If another block is in execution, this block w ill go

into error 52 and w ill not be executed. The HMI w ill

show the alarm A00052.)

VAR_OUTPUT

InSync BOOL Output enabling

Busy BOOL Flag indicating the block has not yet been ended

Active BOOL Block f lag w ith control on the axis

CommandAborted BOOL Flag of aborted command

Error BOOL Error in the execution f lag

ErrorID WORD Identif ier of the occurred error

VAR MC_GEARINPOS_INST_0 MC_GEARINPOS Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it sends a command for synchronism in position
between the programmed axes.

For the slave axis to reach the speed of the master axis, a motion will be performed with an
acceleration/deceleration configured in the “Acceleration” and “Deceleration” arguments. The motion
direction will depend on the signal of the RatioNumerator. If RatioNumerator is greater than zero, the
motion will be in the same direction as the master axis, and if the RatioNumerator is smaller than
zero, the motion will be in the opposite the direction of the master axis.

When the MC_GearInPos block is executed, the drive will start operating in grid position and remain
this way even after the conclusion of the block. The position proportional gain must be set (P0159) so
as to obtain a better drive performance.

In the execution of the block, the axis status will change to Synchronized Motion.

The InSync output is activated when the sync is achieved. It order to finish the block, it is necessary

Equipments (Devices)

WPS v2.5X | 1464

to execute another block or the changing of the drive to the Disabled or Errorstop status.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Code Description

52
Attempt to execute block w ith BufferMode in Single

w hen another block is active.

62
Acceleration programmed below the minimum

allow ed.

63
Acceleration programmed above the maximum

allow ed.

64
Deceleration programmed below the minimum

allow ed.

65
Deceleration programmed above the maximum

allow ed.

67 Drive in the "Disabled" or “Errorstop” status.

69 Drive in the "Stopping" status.

70

Attempt to execute block w ith BufferMode in

Buffered w hen another block is active and another

block is w aiting.

71 P202 different from 4.

72 Invalid synchronism ratio.

74 Drive in the "Homing" status.

78 MC block not executed – Internal fault.

Example

In the up transition of GEARINPOS_EXECUTE, the MC_GearInPos block is executed. With this the
Busy Active and this block signals are set and the search of synchronization with the configured
acceleration begins. As the ratio configured is 79:121 and the master axis is at 200 RPM, the slave
axis must reach 131 RPM to establish the synchronism.

Equipments (Devices)

WPS v2.5X | 1465

At the moment in which the speed reaches 131 RPM, the InSync output is set.

11.10.7.14.3.3 MC_GearOut

Block responsible for finalizing of the synchronism in position between the programmed axes.

Ladder Representation

Execution Features

Program Memory Size 28 Bytes

Data Memory Size 4 Bytes

Block Structure

Variable Type Name Data Type Description

VAR_IN_OUT Slave BYTE
Selection of operation slave

(0 - Real axis)

VAR_INPUT Execute BOOL Block enabling

VAR_OUTPUT

Done BOOL Output enabling

Busy BOOL Flag indicating the block has not yet been ended

Error BOOL Error in the execution f lag

ErrorID WORD Identif ier of the occurred error

VAR MC_GEAROUT_INST_0 MC_GEAROUT Instance of access to block structure

Operation

When this block detects a leading edge on Execute it concludes the synchronism of MC_GearIn
MC_GearInPos or blocks the programmed axis. The axis will keep the speed of the moment in which
the block is executed.

When the MC_GearOut block is executed, the drive does not operate in grid position. In the execution
of the block the axis status will change to ContinuousMotion.

When Execute has FALSE value, Done remains FALSE. The Done output is activated when the block
finishes the execution successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Equipments (Devices)

WPS v2.5X | 1466

Code Description

67 Drive in the "Disabled" or “Errorstop” status.

71 P202 different from 4.

73 Drive is not in the “Synchronized Motion” status.

78 MC block not executed – Internal fault.

Example

In the up transition of GEAROUT_EXECUTE, the MC_GearOut block is executed. With this, the Busy
and Active signals of this block are set and synchronism concluded by other blocks of synchronism
between master and slave. When the process finishes, the Done output of the block is set and
remains TRUE while the Execute input is set.

11.10.7.14.3.4 MC_PhasingRelative

Block responsible for execution of a phase difference in position between the programmed axes.

Ladder Representation

Execution Features

Program Memory Size 78 Bytes

Data Memory Size 32 Bytes

Block Structure

Equipments (Devices)

WPS v2.5X | 1467

Variable Type Name Data Type Description

VAR_IN_OUT

Master BYTE

Selection of operation master

(0 - Fast digital inputs)

(1 - CANopen)

(2 - Encoder 1)

(3 - Virtual Axis)

(4 - Encoder 2)

Slave BYTE
Selection of operation slave

(0 - Real axis)

VAR_INPUT

Execute BOOL Block enabling

PhaseShift REAL Phase shift betw een master and slave

Velocity REAL Speed

Acceleration REAL Acceleration

Deceleration REAL Deceleration

VAR_OUTPUT

Done BOOL Output enabling

Busy BOOL Flag indicating the block has not yet been ended

Active BOOL Block f lag w ith control on the axis

CommandAborted BOOL Flag of aborted command

Error BOOL Error in the execution f lag

ErrorID WORD Identif ier of the occurred error

VAR MC_GEARIN_INST_0 MC_GEARIN Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it checks the synchronism between master and
slave and sends a command to motion the master axis in order to let it out-of-phase of the slave axis
in the magnitude of PhaseShift.

When the MC_PhasingRelative block is executed, the drive does not change the current operating
mode. In the execution of the block, the axis status will not change.

When Execute has FALSE value, Done remains FALSE. The Done output is activated when the block
finishes the execution successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Code Description

67 Drive in the "Disabled" or “Errorstop” status.

71 P202 different from 4.

73 Drive is not in the “Synchronized Motion” status.

78 MC block not executed – Internal fault.

79 Master axis is not in synchronism.

96 MC_PhasingRelative block in execution.

Example

Equipments (Devices)

WPS v2.5X | 1468

Equipments (Devices)

WPS v2.5X | 1469

With the position synchronism of the Real Axis with the Quick Counter through the MC_GearInPos
block, and with the occurrence of an up transition in PHASING_EXECUTE, the MC_PhasingRelative
block is executed and a shift of 0.05 turn is applied to the master axis, resulting in a pulse in the
speed. The Done output is set while the Execute input is set.

11.10.7.14.4 Motion Control Homing

11.10.7.14.4.1 MC_FinishHoming

Block responsible for changing the axis status from Homing to Standstill.

Ladder Representation

Execution Features

Program Memory Size 70 Bytes

Data Memory Size 8 Bytes

Block Structure

Equipments (Devices)

WPS v2.5X | 1470

Variable Type Name Data Type Description

VAR_IN_OUT Axis BYTE
Selection of operation axis

(0 - Real axis)

VAR_INPUT Execute BOOL Block enabling

VAR_OUTPUT

Done BOOL Output enabling

Error BOOL Error in the execution f lag

ErrorID WORD Identif ier of the occurred error

VAR MC_HOMEDIRECT_INST_0 MC_HOMEDIRECT Instance of access to block structure

Operation

When this block detects a leading edge in Execute, if the axis status is Homing, the axis status
changes to the Standstill.

When Execute has FALSE value, Done remains FALSE. The Done output is activated when the block
finishes the execution successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Code Description

71 P202 different from 4.

75 Status of the Drive different from “Homing”.

Example

In the up transition of FINISH_EXECUTE, the MC_FinishHoming block is executed. With this, the
Busy and Active signals of this block are set and the status of the selected axis changes to
Standstill. When the process finishes, the Done output of the block is set and remains TRUE while
the Execute input is set.

11.10.7.14.4.2 MC_HomeDirect

Block responsible for changing the reference position of the user.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1471

Execution Features

Program Memory Size 46 Bytes

Data Memory Size 16 Bytes

Block Structure

Variable Type Name Data Type Description

VAR_IN_OUT Axis BYTE
Selection of operation axis

(0 - Real axis)

VAR_INPUT
Execute BOOL Block enabling

SetPosition LREAL New reference position for user

VAR_OUTPUT

Done BOOL Output enabling

Busy BOOL Flag indicating the block has not yet been ended

Active BOOL Block f lag w ith control on the axis

CommandAborted BOOL Flag of aborted command

Error BOOL Error in the execution f lag

ErrorID WORD Identif ier of the occurred error

VAR MC_HOMEDIRECT_INST_0 MC_HOMEDIRECT Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it makes the reference position of the user
(P0051, P0052 and P0053) to be changed to the value of the SetPosition argument.

In the execution of the block, if the axis status is Homing, the axis status changes to the Standstill.
Otherwise, it will remain in its current status.

When Execute has FALSE value, Done remains FALSE. The Done output is activated when the block
finishes the execution successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Code Description

71 P202 different from 4.

76
Status of the Drive different from “Standstill” or

“Homing”.

Equipments (Devices)

WPS v2.5X | 1472

Example

In the up transition of STEPABSSW_EXECUTE, the MC_StepAbsoluteSwitch block is executed and
the search for the AbsoluteSwitch starts. The axis status is changed to Homing.

In case 1, when executing the block, the AbsoluteSwitch is not activated. Since the Direction
argument is set to MC_SwitchNegative, the motion is in the negative direction. When a leading edge
occurs in AbsoluteSwitch (SwitchMode = MC_EdgeOn), the motor stops and revolutions to the
position in which the edge occurred.

Equipments (Devices)

WPS v2.5X | 1473

In case 2, when executing the block, the AbsoluteSwitch is activated. Since the argument Direction
is set to MC_SwitchPositive, the motion is in the positive direction, when exiting the AbsoluteSwitch,
the motor stops and changes to motion in the negative direction. When a leading edge occurs in
AbsoluteSwitch (SwitchMode = MC_EdgeOn), the motor stops and revolutions to the position in
which the edge occurred.

All the motions are performed with an acceleration/deceleration programmed in P0100 and P0101.

When returning to the leading edge position of AbsoluteSwitch, the Done output of the block is set
and remains TRUE while the Execute input is set.

In the up transition of STEPABSSW_DONE, the MC_StepDirect block is executed and the user’s
reference position (P0051, P0052 and P0053) is changed to 3.5 revolutions (P0051 = 8192, P0052 =
3 and P0053 = 0). The axis status is changed to Standstill.

When STEPABSSW_EXECUTE is reset, STEPABSSW_DONE and STEPDIR_DONE are also reset.

11.10.7.14.4.3 MC_StepAbsoluteSwitch

Block responsible for searching the position of AbsoluteSwitch.

Ladder Representation

Execution Features

Program Memory Size 74 Bytes

Data Memory Size 40 Bytes

Block Structure

Equipments (Devices)

WPS v2.5X | 1474

Variable Type Name Data Type Description

VAR_IN_OUT Axis BYTE
Selection of operation axis

(0 - Real axis)

VAR_INPUT

Execute BOOL Block enabling

Direction BYTE

Search direction

(0 – Positive direction)

(1 – Negative direction)

(5 - MC_Sw itchPositive: Positive

direction, if AbsoluteSw itch not

activated)

(6 - MC_Sw itchNegative: Negative

direction, if AbsoluteSw itch not

activated)

SwitchMode BYTE

Search mode

(3 - MC_EdgeOn)

(4 - MC_EdgeOff)

Velocity REAL Speed

VAR_OUTPUT

Done BOOL Output enabling

Busy BOOL
Flag indicating the block has not yet

been ended

Active BOOL Block f lag w ith control on the axis

CommandAborted BOOL Flag of aborted command

Error BOOL Error in the execution f lag

ErrorID WORD Identif ier of the occurred error

VAR
MC_STEPABSOLUTESWITCH

_INST_0
MC_STEPABSOLUTESWITCH

Instance of access to block

structure

Operation

When this block detects a leading edge in Execute, it sends a command to search the position of
AbsoluteSwitch.

The AbsoluteSwitch can only be connected to digital inputs 1, 2 or 3, seeing that the programmed
function of the digital input must be in accordance with the SwitchMode argument. If SwitchMode is
configured as MC_EdgeOn (leading edge), the function of the digital input (P0300, P0301 or P0302)
must be “store position - leading edge" (option 8). If the SwitchMode is configured as MC_EdgeOff
(falling edge), the function of the digital input (P0300, P0301 or P0302) must be “store position - falling
edge” (option 9). AbsoluteSwitch will be considered the first digital input configured according to
SwitchMode from digital input 1. If no digital inputs are configured according to SwitchMode, error 77
will occur in the block and it will not be executed.

If when searching the AbsoluteSwitch position, the LimitSwitch position is reached, the motion will
change direction up to the AbsoluteSwitch position.

The search will be executed with the speed configured in the “Velocity” argument and an acceleration/
deceleration configured in the General Profile.

With the execution of the MC_StepAbsoluteSwitch block, the user’s reference position (P0051,
P0052 and P0053) is not changed. The drive will start operating in grid position and remain this way
even after the conclusion of the block. The position proportional gain must be set (P0159) so as to
obtain a better drive performance.

Equipments (Devices)

WPS v2.5X | 1475

In the execution of the block, the will change to Homing and will remain this way until the execution of
the MC_StepRefPulse, MC_StepDirect or MC_FinishHoming blocks.

When Execute has FALSE value, Done remains FALSE. The Done output is activated when the block
finishes the execution successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Code Description

60 Speed programmed below the minimum allow ed.

61 Speed programmed above the maximum allow ed.

67 Drive in the "Disabled" or “Errorstop” status.

69 Drive in the "Stopping" status.

71 P202 different from 4.

76
Status of the Drive different from “Standstill” or

“Homing”.

77
Digital inputs 1, 2 and 3 not configured according to

“Siw itchMode”.

Example

Equipments (Devices)

WPS v2.5X | 1476

In the up transition of HOME_EXECUTE the MC_StepAbsoluteSwitch block is executed. With this,
the Busy and Active signals of this block are set and the search for AbsoluteSwitch begins.

In case 1, when executing the block, the AbsoluteSwitch is not activated. Since the Direction
argument is set to MC_SwitchNegative, the motion is in the negative direction. When a falling edge in
AbsoluteSwitch (SwitchMode = MC_EdgeOff) occurs, the motor stops and revolutions to the position
in which the edge occurred.

In case 2, when executing the block, the AbsoluteSwitch is activated. Since the argument Direction
is set to MC_SwitchPositive, the motion is in the positive direction, when exiting the AbsoluteSwitch,
the motor stops and changes to motion in the negative direction. When a falling edge in
AbsoluteSwitch (SwitchMode = MC_EdgeOff) occurs, the motor stops and revolutions to the position
in which the edge occurred.

In case 3, when executing the block the AbsoluteSwitch is not activated. Since the Direction
argument is set to MC_SwitchNegative, the motion is in the negative direction. But when the
LimitSwitch is found, the motor stops and changes the motion to the positive direction. When leaving
the AbsoluteSwitch, the motor stops again and changes the motion to the negative direction. When a
falling edge in AbsoluteSwitch (SwitchMode = MC_EdgeOff) occurs, the motor stops and revolutions
to the position in which the edge occurred.

All the motions are performed with an acceleration/deceleration programmed in P0100 e P0101,
except when the LimitSwitch is found, case in which the motor stops instantly.

When returning to the falling edge position of the AbsoluteSwitch, the Done output of the block is set
and the Busy and Active signals of this block are reset. The Done output remains TRUE while the
Execute input is set.

Equipments (Devices)

WPS v2.5X | 1477

11.10.7.14.4.4 MC_StepLimitSwitch

Block responsible for searching the position of LimitSwitch.

Ladder Representation

Execution Features

Program Memory Size 72 Bytes

Data Memory Size 40 Bytes

Block Structure

Variable Type Name Data Type Description

VAR_IN_OUT Axis BYTE
Selection of operation axis

(0 - Real axis)

VAR_INPUT

Execute BOOL Block enabling

Direction BYTE

Search direction

(0 – Positive direction)

(1 – Negative direction)

LimitSwitchMode BYTE

Search mode

(3 - MC_EdgeOn)

(4 - MC_EdgeOff)

Velocity REAL Speed

VAR_OUTPUT

Done BOOL Output enabling

Busy BOOL
Flag indicating the block has not yet been

ended

Active BOOL Block f lag w ith control on the axis

CommandAborted BOOL Flag of aborted command

Error BOOL Error in the execution f lag

ErrorID WORD Identif ier of the occurred error

VAR
MC_STEPLIMITSWITCH

_INST_0
MC_STEPLIMITSWITCH Instance of access to block structure

Operation

Equipments (Devices)

WPS v2.5X | 1478

When this block detects a rising edge in Execute, it sends a command to search the position of
LimitSwitch.

The LimitSwitch can only be connected to digital inputs 1, 2 or 3, seeing that the programmed
function of the digital input must be in accordance with the "LimitSwitchMode" argument and the
“Direction” argument. It will be considered LimitSwitch the first digital input configured according to the
table, from digital input 1. If no digital inputs are configured according to LimitSwitchMode and
Direction, error 77 in the block will occur and it will not be executed:

Direction Limit Sw itch Mode Digital Input Function

MC_Positive MC_EdgeOn Limit switch clockwise active high (option 12)

MC_Positive MC_EdgeOff Limit switch clockwise active low (option 13)

MC_Negative MC_EdgeOn
Limit switch counterclockwise active high

(option 14)

MC_Negative MC_EdgeOff
Limit switch counterclockwise active low (option

15)

The search will be executed with the speed configured in the “Velocity” argument and an acceleration/
deceleration configured in the General Profile.

With the execution of the MC_StepLimitSwitch block, the user’s reference position (P0051, P0052
and P0053) is not changed. The drive will start operating in grid position and remain this way even
after the conclusion of the block. The position proportional gain must be set (P0159) so as to obtain a
better drive performance.

In the execution of the block, the will change to Homing and will remain this way until the execution of
the MC_StepRefPulse, MC_StepDirect or MC_FinishHoming blocks.

When Execute has FALSE value, Done remains FALSE. The Done output is activated when the block
finishes the execution successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Code Description

60 Speed programmed below the minimum allow ed.

61 Speed programmed above the maximum allow ed.

67 Drive in the "Disabled" or “Errorstop” status.

69 Drive in the "Stopping" status.

71 P202 different from 4.

76 Status of the Drive different from “Standstill” or “Homing”.

77
Digital inputs 1, 2 and 3 not configured according to

“Siw itchMode”.

97 Position feedback not allow ed. Please check P290 and P360.

Example

Equipments (Devices)

WPS v2.5X | 1479

In the up transition of HOME_EXECUTE the MC_StepLimitSwitch block is executed. With this, the
Busy and Active signals of this block are set and the search for LimitSwitch begins.

In case 1, when executing the block, the LimitSwitch is not activated. Since the Direction argument is
set to MC_Negative, the motion is in the negative direction. When the leading edge in LimitSwitch
(LimitSwitchMode = MC_EdgeOn) occurs, the motor stops and revolutions to the position in which
the edge occurred.

In case 2, when executing the block, the LimitSwitch is activated. Even with the "Direction” argument
configured as MC_Negative, the motion will be in the positive direction and, when leaving the
LimitSwitch, the motor stops and changes the motion to the negative direction. When the leading
edge in LimitSwitch (SwitchMode = MC_EdgeOn) occurs, the motor stops and revolutions to the
position in which the edge occurred.

All the motions are performed with an acceleration/deceleration programmed in P0100 e P0101,
except when the LimitSwitch is found, case in which the motor stops instantly.

Equipments (Devices)

WPS v2.5X | 1480

When returning to the leading edge position of the LimitSwitch, the Done output of the block is set
and the Busy and Active signals of this block are reset. The Done output remains TRUE while the
Execute input is set.

11.10.7.14.4.5 MC_StepReferencePulse

Block responsible for searching the position of the zero pulse.

Ladder Representation

Execution Features

Program Memory Size 72 Bytes

Data Memory Size 40 Bytes

Block Structure

Equipments (Devices)

WPS v2.5X | 1481

Variable Type Name Data Type Description

VAR_IN_OUT Axis BYTE
Selection of operation axis

(0 - Real axis)

VAR_INPUT

Execute BOOL Block enabling

Direction BYTE

Search direction

(0 – Positive direction)

(1 – Negative direction)

(5 - MC_Sw itchPositive: Positive

direction, if AbsoluteSw itch not

activated)

(6 - MC_Sw itchNegative: Negative

direction, if AbsoluteSw itch not

activated)

Velocity REAL Speed

SetPosition LREAL New reference position for user

VAR_OUTPUT

Done BOOL Output enabling

Busy BOOL
Flag indicating the block has not yet

been ended

Active BOOL Block f lag w ith control on the axis

CommandAborted BOOL Flag of aborted command

Error BOOL Error in the execution f lag

ErrorID WORD Identif ier of the occurred error

VAR
MC_STEPREFERENCEPULSE

_INST_0
MC_STEPREFERENCEPULSE

Instance of access to block

structure

Operation

When this block detects a rising edge in Execute, it sends a command to search the position of zero
pulse.

The search will be executed with the speed configured in the “Velocity” argument and an acceleration/
deceleration configured in the General Profile.

With the execution of MC_StepReferencePulse block, the reference position of the user (P0051,
P0052 and P0053) is changed to the value of the SetPosition argument. The drive will start operating
in grid position and remain this way even after the conclusion of the block. The position proportional
gain must be set (P0159) so as to obtain a better drive performance.

In the execution of the block, the axis status will change to Homing. When concluding the search, the
axis status will change to Standstill.

When Execute has FALSE value, Done remains FALSE. The Done output is activated when the block
finishes the execution successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Equipments (Devices)

WPS v2.5X | 1482

Code Description

60 Speed programmed below the minimum allow ed.

61 Speed programmed above the maximum allow ed.

67 Drive in the "Disabled" or “Errorstop” status.

69 Drive in the "Stopping" status.

71 P202 different from 4.

76
Status of the Drive different from “Standstill” or

“Homing”.

Example

Equipments (Devices)

WPS v2.5X | 1483

In the up transition of STEPLIMSW_EXECUTE the MC_StepLimitSwitch block is executed. With this,
the Busy and Active signals of this block are set and the search for LimitSwitch begins.

In case 1, when executing the block, the LimitSwitch is not activated. Since the Direction argument is
set to MC_Negative, the motion is in the negative direction. When the leading edge in LimitSwitch
(LimitSwitchMode = MC_EdgeOn) occurs, the motor stops and revolutions to the position in which
the edge occurred.

In case 2, when executing the block, the LimitSwitch is activated. Even with the "Direction” argument
configured as MC_Negative, the motion will be in the positive direction and, when leaving the
LimitSwitch, the motor stops and changes the motion to the negative direction. When the leading
edge in LimitSwitch (SwitchMode = MC_EdgeOn) occurs, the motor stops and revolutions to the
position in which the edge occurred.

All the motions are performed with an acceleration/deceleration programmed in P0100 e P0101,
except when the LimitSwitch is found, case in which the motor stops instantly.

When returning to the leading edge position of the LimitSwitch, the Done output of the block is set
and the Busy and Active signals of this block are reset. The Done output remains TRUE while the
Execute input is set.

In the up transition of STEPLIMSW_DONE, the MC_SteoRefPulse block is executed and the search
of the null pulse starts.

The motion will be in the positive direction and when the null pulse is found, the motor stops and
revolutions to the null pulse position.

All the motions are performed with an acceleration/deceleration programmed in P0100 and P0101.

When returning to the null pulse position, the Done output of the block is set and remains in TRUE
while the Execute input is set. The user’s reference position (P0051, P0052 and P0053) is changed to
10.5 revolutions (P0051 = 8192, P0052 = 10 and P0053 = 10).

When STEPLIMSW_EXECUTE is reset, STEPLIMSW_DONE and STEPREFPUL_DONE are also
reset.

11.10.7.14.5 Motion Control Move

11.10.7.14.5.1 MC_MoveAbsolute

Block responsible for performing one positioning to the absolute position programmed.

Equipments (Devices)

WPS v2.5X | 1484

Ladder Representation

Execution Features

Program Memory Size 72 Bytes

Data Memory Size 32 Bytes

Block Structure

Equipments (Devices)

WPS v2.5X | 1485

Variable Type Name Data Type Description

VAR_IN_OUT Axis BYTE
Selection of operation axis

(0 - Real axis)

VAR_INPUT

Execute BOOL Block enabling

ContinuousUpdate BYTE

Automatic update mode

(0 - Rising edge)

(1 - Real time)

Position LREAL Position

Velocity REAL Speed

Acceleration REAL Acceleration

Deceleration REAL Deceleration

Jerk REAL Jerk

BufferMode REAL

Execution start mode

(0 - Starts block immediately, if there is

another block in the execution it w ill be

aborted)

(1 - When another block is in execution, the

block in execution w ill continue its motion

until the end and this new block w ill w ait to

be executed.)

(6 – If another block is in execution, this

block w ill go into error 52 and w ill not be

executed. The HMI w ill show the alarm

A00052.)

VAR_OUTPUT

Done BOOL Output enabling

Busy BOOL
Flag indicating the block has not yet been

ended

Active BOOL Block f lag w ith control on the axis

CommandAborted BOOL Flag of aborted command

Error BOOL Error in the execution f lag

ErrorID WORD Identif ier of the occurred error

VAR MC_MOVEABSOLUTE_INST_0 MC_MOVEABSOLUTE Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it will perform a positioning into the absolute
position configured in the Position argument with a maximum speed configured in the Velocity
argument and acceleration/deceleration set in Acceleration and Deceleration arguments. Depending
on the distance of the positioning and the acceleration and deceleration values, the motor speed will
not reach the maximum configured speed.

NOTE!
If the Jerk argument value is not zero:
1) the value of the deceleration will be the same as the configured value in the acceleration;
2) the ContinuousUpdate On-line argument will have no effect and the argument values are
considered at the time of positive transition Execute;
3) it is not allowed to perform positioning with another active block, occurring ErrorID 95.

When the MC_MotionAbsolute block is executed, the drive will start operating in grid position and

Equipments (Devices)

WPS v2.5X | 1486

remain this way even after the conclusion of the block. The position proportional gain must be set
(P0159) so as to obtain a better drive performance.

In the execution of the positioning, the axis status will change to Discrete Motion. When the
positioning is concluded, the axis status will change to Standstill.

When Execute has FALSE value, Done remains FALSE. The Done output is activated when the block
finishes the execution successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Code Description

52
Attempt to execute block w ith BufferMode in Single

w hen another block is active.

60 Speed programmed below the minimum allow ed.

61 Speed programmed above the maximum allow ed.

62
Acceleration programmed below the minimum

allow ed.

63
Acceleration programmed above the maximum

allow ed.

64
Deceleration programmed below the minimum

allow ed.

65
Deceleration programmed above the maximum

allow ed.

67 Drive in the "Disabled" or “Errorstop” status.

69 Drive in the "Stopping" status.

70

Attempt to execute block w ith BufferMode in

Buffered w hen another block is active and another

block is w aiting.

71 P202 different from 4.

74 Drive in the "Homing" status.

78 MC block not executed – Internal fault.

93 Jerk programmed below the minimum allow ed.

94 Jerk programmed above the maximum allow ed.

95
It is not allow ed to execute positioning w ith Jerk

w hen another block is active.

Example

Equipments (Devices)

WPS v2.5X | 1487

Equipments (Devices)

WPS v2.5X | 1488

In the up transition of MOTIONABS1_EXECUTE, the first MC_MotionAbsolute block is executed.
With this, the Busy and Active signals of this block are set and positioning to absolute position
"revolutions 10" starts.

With the up transition of MOTIONABS2_EXECUTE, the second MC_GearAbsolute block is instantly
executed (BufferMode - Aborting). With this, the Busy and Active signals of this block are set and
positioning to absolute position 15 revolutions starts. At the same time the Busy and Active signals
of the first block are reset and the CommandAborted signal is set for 1 scan cycle.

When the position 15 revolutions is reached, the Done output of the second block is set and the Busy
and Active signals of this block are reset. The Done output remains TRUE while the Execute input is
set.

Equipments (Devices)

WPS v2.5X | 1489

11.10.7.14.5.2 MC_MoveRelative

Block responsible for performing one positioning to the relative position programmed.

Ladder Representation

Execution Features

Program Memory Size 72 Bytes

Data Memory Size 32 Bytes

Block Structure

Equipments (Devices)

WPS v2.5X | 1490

Variable Type Name Data Type Description

VAR_IN_OUT Axis BYTE
Selection of operation axis

(0 - Real axis)

VAR_INPUT

Execute BOOL Block enabling

ContinuousUpdate BYTE

Automatic update mode

(0 - Rising edge)

(1 - Real time)

Distance LREAL Shift distance

Velocity REAL Speed

Acceleration REAL Acceleration

Deceleration REAL Deceleration

Jerk REAL Jerk

BufferMode REAL

Execution start mode

(0 - Starts block immediately, if there is

another block in the execution it w ill be

aborted)

(1 - When another block is in execution, the

block in execution w ill continue its motion

until the end and this new block w ill w ait to

be executed.)

(6 – If another block is in execution, this

block w ill go into error 52 and w ill not be

executed. The HMI w ill show the alarm

A00052.)

VAR_OUTPUT

Done BOOL Output enabling

Busy BOOL
Flag indicating the block has not yet been

ended

Active BOOL Block f lag w ith control on the axis

CommandAborted BOOL Flag of aborted command

Error BOOL Error in the execution f lag

ErrorID WORD Identif ier of the occurred error

VAR MC_MOVERELATIVE_INST_0 MC_MOVERELATIVE Instance of access to block structure

Operation

When this block detects a leading edge in Execute, it will perform a positioning according to the
relative distance to the current position, configured in the Distance argument, with a maximum speed
configured in the Velocity argument and acceleration/deceleration configured in Acceleration and
Deceleration arguments. Depending on the distance of the positioning and the acceleration and
deceleration values, the motor speed will not reach the maximum configured speed.

NOTE!
If the Jerk argument value is not zero:
1) the value of the deceleration will be the same as the configured value in the acceleration;
2) the ContinuousUpdate On-line argument will have no effect and the argument values are
considered at the time of positive transition Execute;
3) it is not allowed to perform positioning with another active block, occurring ErrorID 95.

When the MC_MotionRelative block is executed, the drive will start operating in grid position and

Equipments (Devices)

WPS v2.5X | 1491

remains this way after the conclusion of the block. The position proportional gain must be set (P0159)
so as to obtain a better drive performance.

In the execution of the positioning, the axis status will change to Discrete Motion. When the
positioning is concluded, the axis status will change to Standstill.

When Execute has FALSE value, Done remains FALSE. The Done output is activated when the block
finishes the execution successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Code Description

52
Attempt to execute block w ith BufferMode in Single

w hen another block is active.

60 Speed programmed below the minimum allow ed.

61 Speed programmed above the maximum allow ed.

62
Acceleration programmed below the minimum

allow ed.

63
Acceleration programmed above the maximum

allow ed.

64
Deceleration programmed below the minimum

allow ed.

65
Deceleration programmed above the maximum

allow ed.

67 Drive in the "Disabled" or “Errorstop” status.

69 Drive in the "Stopping" status.

70

Attempt to execute block w ith BufferMode in

Buffered w hen another block is active and another

block is w aiting.

71 P202 different from 4.

74 Drive in the "Homing" status.

78 MC block not executed – Internal fault.

93 Jerk programmed below the minimum allow ed.

94 Jerk programmed above the maximum allow ed.

95
It is not allow ed to execute positioning w ith Jerk

w hen another block is active.

Example

Equipments (Devices)

WPS v2.5X | 1492

Equipments (Devices)

WPS v2.5X | 1493

In the up transition of MOTIONREL1_EXECUTE, the first MC_MotionRelative block is executed. With
this, the Busy and Active signals of this block are set and positioning of 10 positive revolutions from
the current position starts.

When the positioning is finished, the first block is completed. With this, the Busy and Active signals
of this block are reset and Done output is set for 1 scan cycle.

In the up transition of MOTIONREL2_EXECUTE, the second MC_MotionRelative block is executed.
With this, the Busy and Active signals of this block are set and positioning of 5 positive revolutions
from the current position starts.

When the positioning of 5 revolutions finishes, the Done output of the second block is set and the
Busy and Active signals of this block are reset. The Done output remains TRUE while the Execute
input is set.

Equipments (Devices)

WPS v2.5X | 1494

In the up transition of MOTIONREL1_EXECUTE, the first MC_MotionRelative block is executed. With
this, the Busy and Active signals of this block are set and positioning of 10 positive revolutions from
the current position starts.

With the up transition of MOTIONREL2_EXECUTE, the second MC_MotionRelative block is instantly
executed (BufferMode - Aborting). With this, the Busy and Active signals of this block are set and
positioning of 5 positive revolutions from the current position starts. At the same time, the Busy and
Active signals of the first block are reset and the CommandAborted signal is set for 1 scan cycle.

When the positioning of 5 revolutions finishes, the Done output of the second block is set and the
Busy and Active signals of this block are reset. The Done output remains TRUE while the Execute
input is set.

Equipments (Devices)

WPS v2.5X | 1495

11.10.7.14.5.3 MC_MoveVelocity

Block responsible for making a motion to the programmed speed.

Ladder Representation

Execution Features

Program Memory Size 66 Bytes

Data Memory Size 24 Bytes

Block Structure

Equipments (Devices)

WPS v2.5X | 1496

Variable Type Name Data Type Description

VAR_IN_OUT Axis BYTE
Selection of operation axis

(0 - Real axis)

VAR_INPUT

Execute BOOL Block enabling

ContinuousUpdate BYTE

Automatic update mode

(0 - Rising edge)

(1 - Real time)

Velocity REAL Speed

Acceleration REAL Acceleration

Deceleration REAL Deceleration

Jerk REAL Jerk

BufferMode REAL

Execution start mode

(0 - Starts block immediately, if there is

another block in the execution it w ill be

aborted)

(1 - When another block is in execution, the

block in execution w ill continue its motion

until the end and this new block w ill w ait to

be executed.)

(6 – If another block is in execution, this

block w ill go into error 52 and w ill not be

executed. The HMI w ill show the alarm

A00052.)

VAR_OUTPUT

InVelocity BOOL Output enabling

Busy BOOL
Flag indicating the block has not yet been

ended

Active BOOL Block f lag w ith control on the axis

CommandAborted BOOL Flag of aborted command

Error BOOL Error in the execution f lag

ErrorID WORD Identif ier of the occurred error

VAR MC_MOVEVELOCITY_INST_0 MC_MOVEVELOCITY Instance of access to block structure

Operation

When this block detects a leading edge in Execute, it will perform a motion into the configured speed
in the Velocity argument with acceleration/deceleration configured in Acceleration and Deceleration
arguments. The motion direction will depend on the speed signal: If the speed is greater than zero,
the motion will be in the positive direction (clockwise) and if the speed is less than zero, the motion
will be in the negative direction (counterclockwise).

NOTE!
If the Jerk argument is different from zero, the ContinuousUpdate On-line argument will have no
effect and the argument values are considered at the time of positive transition Execute.

When the MC_MotionVelocity block is executed, the drive does not operate in grid position.

In the execution of the motion the axis status will change to Continuous Motion.

When Execute has FALSE value, InVelocity remains FALSE. The InVelocity output is activated when

Equipments (Devices)

WPS v2.5X | 1497

the programmed speed is achieved successfully, remaining TRUE level while the block is active. It
order to conclude the block, it is necessary the execution of another block or the changing of the drive
to the Disable or Errorstop status.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Code Description

52
Attempt to execute block w ith BufferMode in Single

w hen another block is active.

60 Speed programmed below the minimum allow ed.

61 Speed programmed above the maximum allow ed.

62
Acceleration programmed below the minimum

allow ed.

63
Acceleration programmed above the maximum

allow ed.

64
Deceleration programmed below the minimum

allow ed.

65
Deceleration programmed above the maximum

allow ed.

67 Drive in the "Disabled" or “Errorstop” status.

69 Drive in the "Stopping" status.

70

Attempt to execute block w ith BufferMode in

Buffered w hen another block is active and another

block is w aiting.

71 P202 different from 4.

74 Drive in the "Homing" status.

78 MC block not executed – Internal fault.

93 Jerk programmed below the minimum allow ed.

94 Jerk programmed above the maximum allow ed.

95
It is not allow ed to execute positioning w ith Jerk

w hen another block is active.

Example

Equipments (Devices)

WPS v2.5X | 1498

Equipments (Devices)

WPS v2.5X | 1499

In the up transition of MOTION1_EXECUTE, the first MC_MotionVelocity block is executed. With this,
the Busy and Active signals of this block are set and the motion to reach the speed of 200 RPM
starts.
At the moment in which the speed reaches 200 RPM, the InVelocity output is set.

With the up transition of MOTION2_EXECUTE, the second MC_MotionVelocity block is instantly
executed (BufferMode - Aborting). With this, the Busy e Active signals of this block are set and the
motion to the speed of 100 RPM (MOTION2_VELOCITY this time contains the value 100) starts. At
the same time the Busy, Active and InVelocity signals of the first block are reset and the signal
CommandAborted is set for 1 scan cycle.

When the speed of 100 RPM is reached, the InVelocity output of the second block is set and remains
until the execution of another block.

Equipments (Devices)

WPS v2.5X | 1500

Since the ContinuousUpdate argument is configured as Online, with the change of the
MOTION2_VELOCITY value to 80, the speed immediately changes to 80 RPM, without executing an
acceleration/deceleration ramp.

11.10.7.15RTC

11.10.7.15.1 INTIME

Block that performs a programmed enabling for a time based on RTC (Real Time Clock).

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

TIMEON_HOUR WORD UINT Enabling hour

TIMEON_MINUTE WORD UINT Enabling minute

TIMEON_SECOND WORD UINT Enabling second

TIMEOFF_HOUR WORD UINT Disabling hour

TIMEOFF_MINUTE WORD UINT Disabling minute

TIMEOFF_SECOND WORD UINT Disabling second

Q_OPTION# BYTE Output operation

VAR_OUTPUT Q BOOL Block output

Operation

When this block has a TRUE value in EN, it has two modes of operation. If Q_OPTION# is Normal, Q
is enabled when the internal clock's time is equal to that defined by the parameters TIMEON and
disabled when the internal clock's time is equal to the parameters set by TIMEOFF. If Q_OPTION# is
Inverted, Q is disabled when the internal clock's time is equal to that defined by the parameters
TIMEON and enabled when the internal clock's time is equal to the parameters set by TIMEOFF.

When EN has FALSE value, Q remains FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1501

Example

In the example above, the INTIME block is enabled, the Q_OPTION# input is enabled for NORMAL
operation and the current time of the internal clock of the device is lower than the registered enabling
inputs of the block (HOUR_ON, MINUTE_ON and SECOND_ON). This way, the Q output is disabled.

Equipments (Devices)

WPS v2.5X | 1502

In the example above, the INTIME block is enabled, the Q_OPTION# input is enabled for NORMAL
operation and the current time of the internal clock of the device is equal to the registered in the
enabling inputs of the block (HOUR_ON, MINUTE_ON and SECOND_ON). This way, the Q output is
disabled.

In the above example, the INTIME block is disabled. This way, regardless of the input, the Q output is
disabled.

Equipments (Devices)

WPS v2.5X | 1503

In the example above, the INTIME block is enabled, the Q_OPTION# input is enabled for NORMAL
operation and the current time of the internal clock of the device is equal to the registered in the
disabling inputs of the block (HOUR_OFF, MINUTE_OFF and SECOND_OFF). This way, the Q
output is enabled.

In the example above, the INTIME block is enabled, the Q_OPTION# input is enabled for NORMAL
operation and the current time of the internal clock of the device is superior to the registered in the
disabling inputs of the block (HOUR_OFF, MINUTE_OFF and SECOND_OFF). Thus, the Q output is
disabled.

11.10.7.15.2 INWEEKDAY

Block that performs a programmed enabling for weekdays based on RTC (Real Time Clock).

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1504

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

SUNDAY# BOOL Enabled on Sundays

MONDAY# BOOL Enabled on Mondays

TUESDAY# BOOL Enabled on Tuesdays

WEDNESDAY# BOOL Enabled on Wednesdays

THURSDAY# BOOL Enabled on Thursdays

FRIDAY# BOOL Enabled on Fridays

SATURDAY# BOOL Enabled on Saturdays

Q_OPTION# BYTE Output operation

VAR_OUTPUT Q BOOL Block output

Operation

When this block has a TRUE value in EN, it has two modes of operation. If Q_OPTION# is Normal, Q
is enabled if the day of week of the internal clock has Enabled parameter in the block. If Q_OPTION#
is Inverted, Q is disabled if the day of week of the internal clock has Enabled parameter in the block.

When EN has FALSE value, Q remains FALSE.

NOTE!
The weekdays are identified by numbers, with Sunday being day 0 and Saturday day 6.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1505

Example

Equipments (Devices)

WPS v2.5X | 1506

In the above example, the INWEEKDAY block is disabled. This way, regardless of the input, the Q
output is disabled.

In the example above, the INWEEKDAY block is enabled and Q_OPTION# input is enabled for
NORMAL operation. The current day of the week of the device's internal clock is Wednesday (value
3), which has ENABLED status in the programming. This way, the Q output is enabled.

In the example above, the INWEEKDAY block is enabled and Q_OPTION# input is enabled for
NORMAL operation. The current day of the week of the device's internal clock is Thursday (value 4),
which has DISABLED status in the programming. Thus, the Q output is disabled.

Equipments (Devices)

WPS v2.5X | 1507

In the example above, the INWEEKDAY block is enabled and Q_OPTION# input is enabled for
INVERTED operation. The current day of the week of the device's internal clock is Thursday (value 4),
which has DISABLED status in the programming. This way, the Q output is enabled.

11.10.7.16Timer

11.10.7.16.1 TOF

Timer block that, when energized, disables the output after a delay set by PT.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

IN BOOL Block enabling

PT
WORD UINT

DWORD UDINT
Delay of output deactivating

TIMEBASE WORD Time base for PT and ET

VAR_OUTPUT

Q BOOL Block output

ET
WORD UINT

DWORD UDINT
Counter elapsed time

VAR TOF_INST_0 TOF Instance of access to block structure

NOTE!
In CFW300, the PT e ET fields can only be WORD ou UINT type.

Operation

While the IN input is TRUE, the Q output is also TRUE and ET also receives the value zero.
On the negative transition edge in IN, counting is triggered and ET is incremented according to
TIMEBASE. When ET equals PT, the Q output goes to state FALSE until IN revolutions to FALSE.

Compatibility

Device Version

PLC300 1.50 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1508

Operation Diagram

Equipments (Devices)

WPS v2.5X | 1509

Example

The above example disables the DO1 output to identify a low level in DI1 for 12 seconds, remaining
disabled until DI1 again be TRUE.

11.10.7.16.2 TON

Timer block that, when energized, enables the output after a delay set by PT.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1510

Variable Type Name Data Type Description

VAR_INPUT

IN BOOL Block enabling

PT
WORD UINT

DWORD UDINT
Delay of output drive

TIMEBASE WORD Time base for PT and ET

VAR_OUTPUT

Q BOOL Block output

ET
WORD UINT

DWORD UDINT
Counter elapsed time

VAR TON_INST_0 TON Instance of access to block structure

NOTE!
In CFW300, the PT e ET fields can only be WORD ou UINT type.

Operation

While the IN input is FALSE, the Q output is FALSE and ET also receives the value zero.
On the edge positive transition in IN, counting is triggered and ET is incremented according to
TIMEBASE. When ET equals PT, the Q output goes to state TRUE until IN revolutions to FALSE.

Compatibility

Device Version

PLC300 1.50 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1511

Operation Diagram

Equipments (Devices)

WPS v2.5X | 1512

Example

The above example shows the initial conditions of the block and of the routine variables.

When activated the IN input, counting is triggered. Since ET equals PT, the Q output is enabled.

Note that a change in PRESET variable is not forwarded to the PT field while the IN entry remains
enabled.

Equipments (Devices)

WPS v2.5X | 1513

Disabling the IN input, the value of PT is updated and the Q output is disabled. When activating it
again, counting is triggered.

Disabling the IN input, the value of ET remains saved.

Enabling the IN input, the value of ET is reset and counting is triggered.

When ET reaches the value PT, the Q is output enabled and remains so while IN is at TRUE level.

11.10.7.16.3 TP

Timer block that, when identifies it is energized, enables the output after a delay set by PT.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1514

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

IN BOOL Block enabling

PT
WORD UINT

DWORD UDINT
Time w hile the output is enabled

TIMEBASE WORD Time base for PT and ET

VAR_OUTPUT

Q BOOL Block output

ET
WORD UINT

DWORD UDINT
Counter elapsed time

VAR TP_INST_0 TP Instance of access to block structure

NOTE!
In CFW300, the PT e ET fields can only be WORD ou UINT type.

Operation

On the edge positive transition in IN, Q receives TRUE value, counting is triggered and ET is
incremented according to TIMEBASE. When ET equals PT, the Q output goes to state FALSE until
IN revolutions to FALSE. At that moment, if IN is at TRUE level, nothing happens. On the edge
positive transition in IN, ET is automatically reset.

Compatibility

Device Version

PLC300 1.50 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1515

Operation Diagram

Equipments (Devices)

WPS v2.5X | 1516

Example

The above example enables the DO1 output for six seconds at each DI1 positive transition.

11.10.7.17Cam Profiles

It allows loading and editing the cam table of the CAM curves.
Accessed by the CAM Profile List command with the right button of the mouse in the CAM Profiles folder of
the resource.

Equipments (Devices)

WPS v2.5X | 1517

Description

The cam tables from 1 to 10 are tables of fixed points, which are transmitted at the moment of the download of
the application. In order to use the tables 1 to 10, first the MC_CamTableSelect block must be executed with
the desired table and then the MC_CamIn block.
The cam tables 11 to 20 are tables of variable points. In order to use the tables 11 to 20, first the
MC_CamCalc block must be executed with the desired table and then the MC_CamIn block.

For the SCA06 equipment, it is allowed programming at most 200 fixed points and 100 variable points, seeing
that the maximum number of variable points of each table must be configured in the Max Points column, as
shown below:

Equipments (Devices)

WPS v2.5X | 1518

In order to edit the cam table, click on the Edit button, and the cam profile editor will open, as in the figure
below:

Equipments (Devices)

WPS v2.5X | 1519

This window has the following controls:

Cam table:

NOTE!
The CAM block is always relative, so the first point of the cam table will always be master= 0 and
slave = 0.

Graphic of the profile:

Equipments (Devices)

WPS v2.5X | 1520

Graphic control tools:

Values of the cursor:
Values relative to the selected point of the cursor.

Master speed:
Speed used to calculate the speed, acceleration and jerk of the slave.

Equipments (Devices)

WPS v2.5X | 1521

NOTE!
The speed, acceleration and jerk of the slave must be used as reference to develop the cam
profile, where they are calculated numerically, not taking into account load, inertia, torque and
dynamics of the drive.

Adding a new point to the cam profile

A point can be added by means of the add or insert point buttons or by double clicking the graphic in the
position where you wish to add the point. You can double click any region of the graphic. In case an
interpolation already exists in this region, the editor will insert this point between the two points of the
interpolation.
The point is always added as linear interpolation.
When a point is added or inserted by means of the respective buttons, the master and slave values come
zeroed. In case of point insertion, that may cause an interruption of the profile, because the master position
must always grow in relation to the origin; therefore, the value of the master and slave must be edited by
clicking on their cells in the cam table.
On the figure below, a point was inserted by double clicking:

In order to change the type of interpolation, click on the type cell in the line corresponding to the origin of the
interpolation and select the desired type.
In the figure below, the point was changed for cubic interpolation.

Equipments (Devices)

WPS v2.5X | 1522

Now, in this curve, it is already possible to see other magnitudes besides the position, such as speed,
acceleration and jerk. For a better view of all magnitudes, we can use the Set Zoom All button according to
the figure below.

The same way, we can choose one of the magnitudes and use the Apply Selected Zoom button. In the
example below, a zoom was applied to the speed.

Equipments (Devices)

WPS v2.5X | 1523

Another interesting tool is the cursor. In the example below, we will place the cursor in point of maximum
speed.

You must bear in mind that the speed, acceleration and jerk of the slave depend on the master speed;
therefore, it is interesting to change them so as to simulate something really close to the effective values. In
the figure below, the master speed will be changed to 1000 rpm and we will analyze the same position of the
cursor.

Equipments (Devices)

WPS v2.5X | 1524

During the project of the cam profile, all those magnitudes must be observed, because they may be
accomplished or not due to mechanical, electrical and electronic limitations of the involved equipment.

Since the acceleration and jerk graphics are calculated taking into account the interpolation between two
points, the acceleration and jerk will be shown as equal to zero in the junctions between linear interpolations.
Although in theory we know that in a speed step the acceleration and jerk are infinite, in practice the
acceleration and jerk at this moment will also depend on the mechanical, electrical and electronic limitations
of the involved equipment. Those speed steps must be observed and considered in the project of the cam
profile. The figure below shows an example of this situation.

The CAM block offers two types of interpolation: linear and cubic. The following equations are used:

Linear:

Equipments (Devices)

WPS v2.5X | 1525

Cubic:

where:
pe = slave position
ve = slave speed
ae = slave acceleration
je = slave jerk
pm = master position
vm = master speed
pim = master initial position
pfm = master final position
pie = slave initial position
pfe = slave final position
a = coefficient calculated by the CAM editor
b = coefficient calculated by the CAM editor
c = coefficient calculated by the CAM editor

Changing a point in the cam profile

A point can be changed by means of the cam table by using direct edition or moving the point in the graphic.
In order to move the point in the graphic, place the cursor on the point, which is marked with a red square,
click and hold it, and drag it to the new position.
When you click on the point, the cam table will move to this point, selecting the related cell.
The operation of moving the point in the graphic is interactive and calculates all the profile each time the point
is changed. The new point can be seen in the cam table.

Removing a point from the cam profile

The point is removed directly in the cam table. In order to do so, select one of the cells referring to the point
and click on the Remove Point button.

Zoom of a certain area of the graphic

Click on one of the corners of the region you wish to zoom and hold it, and move the mouse so as to mark a
region. Then a rectangle will show on the graphic; release the button. The figure below shows an example of
this zoom.

Equipments (Devices)

WPS v2.5X | 1526

Graphic menu

In order to access the graphic menu, right click on the graphic area, and the following menu will show.

The figure below shows the graphic property box.

Equipments (Devices)

WPS v2.5X | 1527

11.10.7.18Structures

Structure is a data grouping used to define a recipe or an object.

In the Ladder program, it is possible to create variables of the structure type and use them in the blocks. To
access the internal members of the structure, the '.' is used followed by its respective member.

Creating a structure

1. With the right button of the mouse on the folder Structure, click on New file.

Equipments (Devices)

WPS v2.5X | 1528

Figure 1: Creating a structure

2. Define the file name and press the Next button.

Figure 2: Defining the structure name

3. Configure the structure using the buttons presented in the figure below.

Equipments (Devices)

WPS v2.5X | 1529

Figure 3: Editing the Structure

4. After finishing the edition of the structure, click on the button Finish.

Figure 4: Structure created in the project

Equipments (Devices)

WPS v2.5X | 1530

Editing a structure

Just double click on the desired structure, as shown in figure 4, and a window will open as shown in figure 3,
allowing to insert new data, erase or move the position of the data.

11.10.8Diagnostic

11.10.8.1 Monitoring Panel

Main Signals

11.10.8.1.1 Main Signals

The Main Signals window provides a general view of the main signals of the equipment:

Drive status (P00006),
General indications (P00202, P00002, P00003 and P00004),
Alarm (P00030) and fault (P00035),
Temperatures (P00021 and P00022),
Network status (P00070, P00075 and P00076), and
PLC information (P01000 and P01001).

The main signals are detailed below.

Parameter Function Description

P00006 Servodrive Status It indicates the current status of the servodrive

P00202 Operation Mode
It defines the operation mode of the servodrive, that is, w hich variable w ill be controlled:

Torque, Speed or if the control w ill be done via Ladder, CANopen or Profibus

P00002 Motor Speed
It indicates the effective speed value in rpm, except w hen programmed to receive

external position / speed feedback

P00003 Motor Current It indicates the output Iq current, in amperes rms, of the servodrive

P00004 DC Link voltage It indicates the present voltage on the DC Link in volts (V)

P00030 Present Alarm It indicates the number of the alarm w hich may be present on the servodrive

P00035 Present Fault It indicates number of the fault w hich may be present on the servodrive.

P00021 Internal Air Temperature This parameter presents, in Celsius degrees, the internal air temperature

P00022 Heatsink Temperature This parameter presents, in Celsius degrees, the heatsink temperature

P00070 CAN Controller Status
It indicates the CAN controller status, responsible for sending and receiving CAN

telegrams

P00075 CANopen Netw ork Status
It indicates the CANopen communication status, informing if the protocol w as initialized

correctly and the status of the slave guarding service

P00076 CANopen Node Status
Each device in the CANopen netw ork has an associated status. It is possible to see the

present status of the servodrive through this parameter

P01000 PLC Status It allow s the user to view the program status

P01001 Scan Time It allow s the user to monitor the scan cycle time of the program in milliseconds

Equipments (Devices)

WPS v2.5X | 1531

The window may be viewed below.

11.10.8.2 Log

Overview

Configuration

11.10.8.2.1 Overview

The log function allows viewing the present alarms/faults and also the last alarms/faults in a more friendly and
centralized way than on the equipment HMI, showing the data in tabular form.

All downloaded alarms/faults are saved in a file in order to keep a record for future reference; it is also possible
to export the saved data as a csv file.

Below is an overview of the SCA06 log table.

Equipments (Devices)

WPS v2.5X | 1532

1. Actions. Below is the sequential description of each action:
1.1.On-Line Reading: This action constantly searches for new faults/alarms on the equipment; in case

any occurs, the table is automatically updated.
1.2.Read Logs: This action reads all faults/alarms only once and updates the table.
1.3.Export: Export of data shown in the table as a CSV file.

2. Present Fault and Alarm. This field shows the present fault and alarm of the equipment if present;
otherwise, the OK message is shown.

3. Fault and Alarm Table. This table shows all the faults and alarms, as well as the date when they
occurred, code and description.

11.10.8.2.2 Configuration

In order to create a new log file, just execute the operation below:

1. Create a new log file by selecting the Read Logs option; it is necessary to be connected to the device to
execute this operation.

2. After the read logs step is completed, the log file will be automatically created with a name composed of the
present data and time and with all the alarms and faults present on the equipment read.

Equipments (Devices)

WPS v2.5X | 1533

11.10.8.3 Trace

11.10.8.3.1 Overview

The trace function is used to register variables* of interest of the device (such as current, voltage, speed, etc.)
when a certain event occurs in the system. Since it triggers the storage of the variables, in the system this
event is called trigger, and the user can define up to three trigger conditions and the logic to be used in them
(AND or OR logic).
The stored variables can be seen as graphics by using the WPS running on a PC connected via USB or via
serial to the device.

NOTE: Up to 6 (six) channels using SCA06; Up to 4 (four) channels using CFW-11.

Below is an overview of the configuration screen of the trace function (example using SCA06).

Equipments (Devices)

WPS v2.5X | 1534

1. Graphic Zoom. This bar contains the options to control the graphic, such as export to image file, zoom in,
zoom out, set width, set height, se all and show or not show the graphic lettering.

2. Trace Status. This item shows the present status of the trace function: not started, trigger occurred and
concluded.

3. Parameters. In this part are all the parameters that can be configured in the trace routine, such as triggers,
conditions, channels to be monitored and sampling period.

4. Graphic. In this area is the graphic after the conclusion of trace. In the lower part is the time line and on the
right are the values separated by unit of measurement.

5. Markers. The markers are within the graphic area. After the graphic is set, just click on the black marker to
create red markers (fixed). It is possible to add two fixed markers. Those fixed markers are used to
calculate the average and effective values between the two points.

6. Trace command. Below is the description of the command functions:
6.1.Read configuration: It reads the trace configuration parameters and updates the parameters on the

screen (item 3).
6.2.Save configuration: It sends the trace configuration parameters (item 3) to the equipment.
6.3.Read Data: Command used only when the trace status is concluded, that is, there is already a

concluded trace on the equipment, and you just wish to download the data without starting a new trace.
6.4.Force Trigger: Forces the trigger regardless the conditions.
6.5.Start Trace: It starts the trace function.

7. Channel Table. This table shows the data of the chosen channels, besides the possibility to hide
channels (Visible), change the channel color (Color) and set the graphic limits per unit of measurement
(Maximum).

11.10.8.3.2 Configuration

Below is a list of the necessary steps to create a trace configuration:

1. Creation of a new trace file.

Equipments (Devices)

WPS v2.5X | 1535

Equipments (Devices)

WPS v2.5X | 1536

2. After the creation of the trace file, it is necessary to set the desired configurations in the part of parameters.

3. After making the desired configurations, just click on save configuration to send them to the equipment.

Equipments (Devices)

WPS v2.5X | 1537

Notice that it is necessary to be connected to the equipment with the option Connect Device of the WPS.

4. After the configurations are saved, just click on Start Trace. Notice that the status of the trace function
changed to Waiting, that is, the tool is now waiting for the trigger execution to set the graphic and show the
trace values.

Equipments (Devices)

WPS v2.5X | 1538

5. After trigger occurs, the graphic and the values will be shown in the table and the trace function status will
be Concluded.

Equipments (Devices)

WPS v2.5X | 1539

6. If you wish, you can click on the black cursor of the graphic and add fixed cursors so that the calculation of
the average and effective values will be performed for the channels in the defined ranges.

Equipments (Devices)

WPS v2.5X | 1540

11.11SSW-06

Enter topic text here.

11.11.1Description

Soft-Starters are static starters that accelerate, decelerate and protect three-phase induction motors. The
control of the voltage applied to the motor by means of adjustments to the firing angle of thyristors allows the
soft-starter to start and stop an electric motor smoothly.

The SSW-06, with DSP (Digital Signal Processor) control was designed for high performance on motor starts
and stops with an excellent cost-benefit ratio. Easy to set up, it simplifies start-up activities and daily
operation.

The SSW-06 is compact optimizing space in electric panels. It already incorporates electric motor protection.
It adapts to customer needs through its easy-to-install optional accessories.

The SSW-06 adapts to customer needs through its easy-to-install optional accessories. Thus, a keypad, a
communication interface or a motor PTC input can be added to the product.

Equipments (Devices)

WPS v2.5X | 1541

Refer to the user's manual of the SSW-06 for further details about the product.

NOTE!

This product does not have the Ladder tool available in WPS.
You can use the WLP application if this feature is required.

11.11.2Parameters

11.11.2.1 Overview

The parameter configuration screen is used to configure and monitor all the parameters of the equipment,
including the user parameters.

NOTE!
The reading and writing of such parameters is done on this screen; only the user parameter
configuration must be sent the first time or whenever modified by means of the resource
download routine.

Below is an overview of the parameter configuration screen.

Equipments (Devices)

WPS v2.5X | 1542

1. Parameter files. In this part are all the parameter configuration files created by the user. Notice that when
the file features a person figure on the table, it means this parameter table contains hidden parameters/
group of parameters.

2. Group of parameters. This tree shows all the group of parameters. Notice that the same parameter can be
in more than one group, and when its value is modified, it will be modified in all the groups to which it
belongs.

3. Modified group of parameters. Group of parameters which contain the figure of a person on the table
means they have hidden parameters.

4. Commands. The commands are described below in the order they appear:
4.1.Unhide parameter: In case some parameter has been hidden, this button allows making it visible

again.
4.2.Hide parameter: Just select one or more parameters on the table and trigger this command to hide

them.
4.3.Save table: It saves the values of the parameters shown on the equipment screen; the sent values are

the ones in the User column. The flow is User -> Monitored (equipment)
4.4.Read table: It reads the parameters of the equipment shown in the Monitored column and saves them

in the parameter file in the User column. The flow is Monitored (equipment) -> User
4.5.User parameters: It opens a screen to edit the user parameters.
4.6.Filter: It opens a parameter filter option, and it can filter by parameter number or description.
4.7.User Parameters and Monitored Parameters. These two columns show the off-line and on-line

parameters, so to speak. The User column shows the values contained in the file located on the
computer and the Monitored column shows the values that are effectively saved on the equipment.
Whenever you use the Save Parameter option, the sent values will be from the User column to the
Monitored column, that is, File -> Equipment. In case of reading, the flow is the opposite, from the
Monitored column to the User column, that is, Equipment -> File. In case you wish to change the
values directly on the equipment without changing it in the file, just click on the monitored column,
change the values and the modification will occur on-line.

5. Modified parameters: Whenever a parameter value in the User column is different from the Monitored
column, it will be shown in red.

6. Output. This screen shows error information in case they occur during the writing or reading of the
parameters.

11.11.2.2 Configuration

Below is the list of the required steps to create a parameter file.

1. Create a new parameter file.

2. Define a name for the parameter file

Equipments (Devices)

WPS v2.5X | 1543

3. Configure which parameters you wish to view in your parameter table

Equipments (Devices)

WPS v2.5X | 1544

4. After performing the steps above, the parameter file will be created and the equipment can be
parameterized.

Equipments (Devices)

WPS v2.5X | 1545

11.11.2.3 Read and Write of Parameters

There are 3 (three) ways to do the reading and writing of the parameters: by means of table, selection and
group.

1. Table writing. The table writing command will send all visible parameters on the equipment screen. If and
error occurs during the sending of some specific parameter, a message will be shown on the output window
informing the error. It is important to notice that only visible parameters will be sent; therefore, it is necessary
attention to which node of the group of parameters tree you are viewing. Example: If you wish to write all of
them without filtering per group, just select the tree root.

Equipments (Devices)

WPS v2.5X | 1546

2. Table reading. The table reading command will read all the parameters of the equipment. If a error occurs
during the reading of some specific parameter, a message will be shown on the output window informing the
error. It is important to notice that only visible parameters will be read; therefore, it is necessary attention to
which node of the group of parameters tree you are viewing. Example: If you wish to read all of them without
filtering per group, just select the tree root.

Equipments (Devices)

WPS v2.5X | 1547

3. Reading/writing of specific parameters. In order to read/write one or more specific parameters, just
select them on the table, right click and choose the desired option: read or write parameter.

4. Reading/writing of group of parameters. In order to read/write only one group of parameters, just select
it on the group tree, right click and choose the desired option: read or write group.

Equipments (Devices)

WPS v2.5X | 1548

11.11.2.4 Hide/Unhide Parameters and Group of Parameters

The parameter can be hidden/unhidden in two ways: individually or in group.

1. Hide parameters. In order to hide a parameter individually, just right click on the desired parameters and
select the Hide Parameter option. You can also press the Delete key.

2. Unhide Parameters. In order to show hidden parameters, right click and choose the Unhide Parameters

Equipments (Devices)

WPS v2.5X | 1549

or press the Insert key. Then, a window will open and show the hidden parameters. Now, you just have to
select the desired parameters and confirm.
Note: The parameters shown on this new window are only those which belong to the current filter according to
the selection on the parameter group tree. In the figures below, the CAN group is selected; that means that
only the hidden parameters of this group will be shown.

Equipments (Devices)

WPS v2.5X | 1550

Equipments (Devices)

WPS v2.5X | 1551

3. Hide Group of Parameters. In order to hide a group of parameters, just select the group on the tree and
use the Hide Group option.

Equipments (Devices)

WPS v2.5X | 1552

Equipments (Devices)

WPS v2.5X | 1553

4. Unhide Group of Parameters. In order to show a hidden group of parameters, just select the root of the
group tree and select the Unhide Group option. A window will open showing the groups that are hidden; then
just select the group you wish to unhide.

Equipments (Devices)

WPS v2.5X | 1554

Equipments (Devices)

WPS v2.5X | 1555

Equipments (Devices)

WPS v2.5X | 1556

5. Hide and Show Parameters and Groups of Parameters. By means of this option, you have full control
of the parameters and groups of parameters. It is possible to hide and unhide individual parameters, multiple
parameters, individual groups and multiple groups in the same action.

Equipments (Devices)

WPS v2.5X | 1557

Equipments (Devices)

WPS v2.5X | 1558

11.11.2.5 User Parameters

In order to open the configuration screen of the user parameters, just click on the User Parameters option on
the Parameter node of the project tree or click on the icon indicated on the tool bar of the parameter file.

Configuration Table.

On the user parameter configuration table, it is possible to define several attributes to the parameters, such as
description, minimum and maximum values, unit, digits, data type, etc.

NOTE!
These settings will be automatically displayed in the parameter table. However, to be sent to the
device, you need to download the resource.

Equipments (Devices)

WPS v2.5X | 1559

Table fields:

Parameter: User parameter identification.

Description: Description of the user parameter in the parameter table. On devices that have text-based
HMIs, the description is sent to the machine and displayed on the HMI.

Minimum: Minimum input value for parameter.

Maximum: Maximum input value for parameter.

Unit: Unit displayed on the device's HMI.

Default: Value loaded when restore factory default is selected.

Retentive: Retain value after rebooting devices.

Hexadecimal: Displays the value in hexadecimal.

Digits: Number of decimal digits for displaying value.

Datatype: Parameter datatype used by the ladder application.

Password: Enables password request by changing parameter value.

Equipments (Devices)

WPS v2.5X | 1560

Read only: It does not allow the writing of values in the parameter by the communication network or the HMI.
Writing is done only by the ladder application.

Display HMI: Displays the parameter in the HMI.

Performs modification: Confirmation options when changing the parameter:
o No confirmation: Does not prompt for confirmation when changing parameter.
o With confirmation and engine stopped: Request confirmation and allow change only with engine stopped.
o With confirmation: Prompt for confirmation when changing parameter.

Stopped motor: Perform change only with motor stopped.

Help: On devices that have text-based HMI, you can edit a help text for the parameter.

View the user parameter

In the parameter table, the user parameters will be shown as they are configured on the configuration screen.

11.12SSW-07

Enter topic text here.

11.12.1Description

Equipments (Devices)

WPS v2.5X | 1561

Soft-Starters are static starters that accelerate, decelerate and protect three-phase induction motors. The
control of the voltage applied to the motor by means of adjustments to the firing angle of thyristors allows the
soft-starter to start and stop an electric motor smoothly.

The SSW-07, with DSP (Digital Signal Processor) control was designed for high performance on motor starts
and stops with an excellent cost-benefit ratio. Easy to set up, it simplifies start-up activities and daily
operation.

The SSW-07 is compact optimizing space in electric panels. It already incorporates electric motor protection.
It adapts to customer needs through its easy-to-install optional accessories.

The SSW-07 adapts to customer needs through its easy-to-install optional accessories. Thus, a keypad, a
communication interface or a motor PTC input can be added to the product.

Refer to the user's manual of the SSW-07 for further details about the product.

NOTE!

This product does not have the Ladder tool available in WPS.
You can use the WLP application if this feature is required.

11.12.2Parameters

11.12.2.1 Overview

The parameter configuration screen is used to configure and monitor all the parameters of the equipment,
including the user parameters.

NOTE!
The reading and writing of such parameters is done on this screen; only the user parameter
configuration must be sent the first time or whenever modified by means of the resource
download routine.

Below is an overview of the parameter configuration screen.

Equipments (Devices)

WPS v2.5X | 1562

1. Parameter files. In this part are all the parameter configuration files created by the user. Notice that when
the file features a person figure on the table, it means this parameter table contains hidden parameters/
group of parameters.

2. Group of parameters. This tree shows all the group of parameters. Notice that the same parameter can be
in more than one group, and when its value is modified, it will be modified in all the groups to which it
belongs.

3. Modified group of parameters. Group of parameters which contain the figure of a person on the table
means they have hidden parameters.

4. Commands. The commands are described below in the order they appear:
4.1.Unhide parameter: In case some parameter has been hidden, this button allows making it visible

again.
4.2.Hide parameter: Just select one or more parameters on the table and trigger this command to hide

them.
4.3.Save table: It saves the values of the parameters shown on the equipment screen; the sent values are

the ones in the User column. The flow is User -> Monitored (equipment)
4.4.Read table: It reads the parameters of the equipment shown in the Monitored column and saves them

in the parameter file in the User column. The flow is Monitored (equipment) -> User
4.5.User parameters: It opens a screen to edit the user parameters.
4.6.Filter: It opens a parameter filter option, and it can filter by parameter number or description.
4.7.User Parameters and Monitored Parameters. These two columns show the off-line and on-line

parameters, so to speak. The User column shows the values contained in the file located on the
computer and the Monitored column shows the values that are effectively saved on the equipment.
Whenever you use the Save Parameter option, the sent values will be from the User column to the
Monitored column, that is, File -> Equipment. In case of reading, the flow is the opposite, from the
Monitored column to the User column, that is, Equipment -> File. In case you wish to change the
values directly on the equipment without changing it in the file, just click on the monitored column,

Equipments (Devices)

WPS v2.5X | 1563

change the values and the modification will occur on-line.
5. Modified parameters: Whenever a parameter value in the User column is different from the Monitored

column, it will be shown in red.
6. Output. This screen shows error information in case they occur during the writing or reading of the

parameters.

11.12.2.2 Configuration

Below is the list of the required steps to create a parameter file.

1. Create a new parameter file.

2. Define a name for the parameter file

3. Configure which parameters you wish to view in your parameter table

Equipments (Devices)

WPS v2.5X | 1564

4. After performing the steps above, the parameter file will be created and the equipment can be
parameterized.

Equipments (Devices)

WPS v2.5X | 1565

11.12.2.3 Read and Write of Parameters

There are 3 (three) ways to do the reading and writing of the parameters: by means of table, selection and
group.

1. Table writing. The table writing command will send all visible parameters on the equipment screen. If and
error occurs during the sending of some specific parameter, a message will be shown on the output window
informing the error. It is important to notice that only visible parameters will be sent; therefore, it is necessary
attention to which node of the group of parameters tree you are viewing. Example: If you wish to write all of
them without filtering per group, just select the tree root.

Equipments (Devices)

WPS v2.5X | 1566

2. Table reading. The table reading command will read all the parameters of the equipment. If a error occurs
during the reading of some specific parameter, a message will be shown on the output window informing the
error. It is important to notice that only visible parameters will be read; therefore, it is necessary attention to
which node of the group of parameters tree you are viewing. Example: If you wish to read all of them without
filtering per group, just select the tree root.

Equipments (Devices)

WPS v2.5X | 1567

3. Reading/writing of specific parameters. In order to read/write one or more specific parameters, just
select them on the table, right click and choose the desired option: read or write parameter.

4. Reading/writing of group of parameters. In order to read/write only one group of parameters, just select
it on the group tree, right click and choose the desired option: read or write group.

Equipments (Devices)

WPS v2.5X | 1568

11.12.2.4 Hide/Unhide Parameters and Group of Parameters

The parameter can be hidden/unhidden in two ways: individually or in group.

1. Hide parameters. In order to hide a parameter individually, just right click on the desired parameters and
select the Hide Parameter option. You can also press the Delete key.

2. Unhide Parameters. In order to show hidden parameters, right click and choose the Unhide Parameters

Equipments (Devices)

WPS v2.5X | 1569

or press the Insert key. Then, a window will open and show the hidden parameters. Now, you just have to
select the desired parameters and confirm.
Note: The parameters shown on this new window are only those which belong to the current filter according to
the selection on the parameter group tree. In the figures below, the CAN group is selected; that means that
only the hidden parameters of this group will be shown.

Equipments (Devices)

WPS v2.5X | 1570

Equipments (Devices)

WPS v2.5X | 1571

3. Hide Group of Parameters. In order to hide a group of parameters, just select the group on the tree and
use the Hide Group option.

Equipments (Devices)

WPS v2.5X | 1572

Equipments (Devices)

WPS v2.5X | 1573

4. Unhide Group of Parameters. In order to show a hidden group of parameters, just select the root of the
group tree and select the Unhide Group option. A window will open showing the groups that are hidden; then
just select the group you wish to unhide.

Equipments (Devices)

WPS v2.5X | 1574

Equipments (Devices)

WPS v2.5X | 1575

Equipments (Devices)

WPS v2.5X | 1576

5. Hide and Show Parameters and Groups of Parameters. By means of this option, you have full control
of the parameters and groups of parameters. It is possible to hide and unhide individual parameters, multiple
parameters, individual groups and multiple groups in the same action.

Equipments (Devices)

WPS v2.5X | 1577

Equipments (Devices)

WPS v2.5X | 1578

11.12.2.5 User Parameters

In order to open the configuration screen of the user parameters, just click on the User Parameters option on
the Parameter node of the project tree or click on the icon indicated on the tool bar of the parameter file.

Configuration Table.

On the user parameter configuration table, it is possible to define several attributes to the parameters, such as
description, minimum and maximum values, unit, digits, data type, etc.

NOTE!
These settings will be automatically displayed in the parameter table. However, to be sent to the
device, you need to download the resource.

Equipments (Devices)

WPS v2.5X | 1579

Table fields:

Parameter: User parameter identification.

Description: Description of the user parameter in the parameter table. On devices that have text-based
HMIs, the description is sent to the machine and displayed on the HMI.

Minimum: Minimum input value for parameter.

Maximum: Maximum input value for parameter.

Unit: Unit displayed on the device's HMI.

Default: Value loaded when restore factory default is selected.

Retentive: Retain value after rebooting devices.

Hexadecimal: Displays the value in hexadecimal.

Digits: Number of decimal digits for displaying value.

Datatype: Parameter datatype used by the ladder application.

Password: Enables password request by changing parameter value.

Equipments (Devices)

WPS v2.5X | 1580

Read only: It does not allow the writing of values in the parameter by the communication network or the HMI.
Writing is done only by the ladder application.

Display HMI: Displays the parameter in the HMI.

Performs modification: Confirmation options when changing the parameter:
o No confirmation: Does not prompt for confirmation when changing parameter.
o With confirmation and engine stopped: Request confirmation and allow change only with engine stopped.
o With confirmation: Prompt for confirmation when changing parameter.

Stopped motor: Perform change only with motor stopped.

Help: On devices that have text-based HMI, you can edit a help text for the parameter.

View the user parameter

In the parameter table, the user parameters will be shown as they are configured on the configuration screen.

11.13SSW-08

Enter topic text here.

11.13.1Description

Equipments (Devices)

WPS v2.5X | 1581

WEG soft starters are fitted with micro processors. They are high-tech and were designed to ensure the
highest performance during starts and stops of induction motors. WEG Soft-Starters are static starting
switches, intended for the acceleration, deceleration and protection of three-phase, induction motors. The
voltage control applied to the motor, by setting the thyristor firing angle, allows smooth starts and stops.

With proper variable settings, the torque produced is set to the requirement of the load, ensuring that the
demanded current of the start is the lowest actually required.

Refer to the user's manual of the SSW-08 for further details about the product.

NOTE!

This product does not have the Ladder tool available in WPS.
You can use the WLP application if this feature is required.

11.13.2Parameters

11.13.2.1 Overview

The parameter configuration screen is used to configure and monitor all the parameters of the equipment,
including the user parameters.

NOTE!
The reading and writing of such parameters is done on this screen; only the user parameter
configuration must be sent the first time or whenever modified by means of the resource
download routine.

Below is an overview of the parameter configuration screen.

Equipments (Devices)

WPS v2.5X | 1582

1. Parameter files. In this part are all the parameter configuration files created by the user. Notice that when
the file features a person figure on the table, it means this parameter table contains hidden parameters/
group of parameters.

2. Group of parameters. This tree shows all the group of parameters. Notice that the same parameter can be
in more than one group, and when its value is modified, it will be modified in all the groups to which it
belongs.

3. Modified group of parameters. Group of parameters which contain the figure of a person on the table
means they have hidden parameters.

4. Commands. The commands are described below in the order they appear:
4.1.Unhide parameter: In case some parameter has been hidden, this button allows making it visible

again.
4.2.Hide parameter: Just select one or more parameters on the table and trigger this command to hide

them.
4.3.Save table: It saves the values of the parameters shown on the equipment screen; the sent values are

the ones in the User column. The flow is User -> Monitored (equipment)
4.4.Read table: It reads the parameters of the equipment shown in the Monitored column and saves them

in the parameter file in the User column. The flow is Monitored (equipment) -> User
4.5.User parameters: It opens a screen to edit the user parameters.
4.6.Filter: It opens a parameter filter option, and it can filter by parameter number or description.
4.7.User Parameters and Monitored Parameters. These two columns show the off-line and on-line

parameters, so to speak. The User column shows the values contained in the file located on the
computer and the Monitored column shows the values that are effectively saved on the equipment.
Whenever you use the Save Parameter option, the sent values will be from the User column to the
Monitored column, that is, File -> Equipment. In case of reading, the flow is the opposite, from the
Monitored column to the User column, that is, Equipment -> File. In case you wish to change the
values directly on the equipment without changing it in the file, just click on the monitored column,

Equipments (Devices)

WPS v2.5X | 1583

change the values and the modification will occur on-line.
5. Modified parameters: Whenever a parameter value in the User column is different from the Monitored

column, it will be shown in red.
6. Output. This screen shows error information in case they occur during the writing or reading of the

parameters.

11.13.2.2 Configuration

Below is the list of the required steps to create a parameter file.

1. Create a new parameter file.

2. Define a name for the parameter file

3. Configure which parameters you wish to view in your parameter table

Equipments (Devices)

WPS v2.5X | 1584

4. After performing the steps above, the parameter file will be created and the equipment can be
parameterized.

Equipments (Devices)

WPS v2.5X | 1585

11.13.2.3 Read and Write of Parameters

There are 3 (three) ways to do the reading and writing of the parameters: by means of table, selection and
group.

1. Table writing. The table writing command will send all visible parameters on the equipment screen. If and
error occurs during the sending of some specific parameter, a message will be shown on the output window
informing the error. It is important to notice that only visible parameters will be sent; therefore, it is necessary
attention to which node of the group of parameters tree you are viewing. Example: If you wish to write all of
them without filtering per group, just select the tree root.

Equipments (Devices)

WPS v2.5X | 1586

2. Table reading. The table reading command will read all the parameters of the equipment. If a error occurs
during the reading of some specific parameter, a message will be shown on the output window informing the
error. It is important to notice that only visible parameters will be read; therefore, it is necessary attention to
which node of the group of parameters tree you are viewing. Example: If you wish to read all of them without
filtering per group, just select the tree root.

Equipments (Devices)

WPS v2.5X | 1587

3. Reading/writing of specific parameters. In order to read/write one or more specific parameters, just
select them on the table, right click and choose the desired option: read or write parameter.

4. Reading/writing of group of parameters. In order to read/write only one group of parameters, just select
it on the group tree, right click and choose the desired option: read or write group.

Equipments (Devices)

WPS v2.5X | 1588

11.13.2.4 Hide/Unhide Parameters and Group of Parameters

The parameter can be hidden/unhidden in two ways: individually or in group.

1. Hide parameters. In order to hide a parameter individually, just right click on the desired parameters and
select the Hide Parameter option. You can also press the Delete key.

2. Unhide Parameters. In order to show hidden parameters, right click and choose the Unhide Parameters

Equipments (Devices)

WPS v2.5X | 1589

or press the Insert key. Then, a window will open and show the hidden parameters. Now, you just have to
select the desired parameters and confirm.
Note: The parameters shown on this new window are only those which belong to the current filter according to
the selection on the parameter group tree. In the figures below, the CAN group is selected; that means that
only the hidden parameters of this group will be shown.

Equipments (Devices)

WPS v2.5X | 1590

Equipments (Devices)

WPS v2.5X | 1591

3. Hide Group of Parameters. In order to hide a group of parameters, just select the group on the tree and
use the Hide Group option.

Equipments (Devices)

WPS v2.5X | 1592

Equipments (Devices)

WPS v2.5X | 1593

4. Unhide Group of Parameters. In order to show a hidden group of parameters, just select the root of the
group tree and select the Unhide Group option. A window will open showing the groups that are hidden; then
just select the group you wish to unhide.

Equipments (Devices)

WPS v2.5X | 1594

Equipments (Devices)

WPS v2.5X | 1595

Equipments (Devices)

WPS v2.5X | 1596

5. Hide and Show Parameters and Groups of Parameters. By means of this option, you have full control
of the parameters and groups of parameters. It is possible to hide and unhide individual parameters, multiple
parameters, individual groups and multiple groups in the same action.

Equipments (Devices)

WPS v2.5X | 1597

Equipments (Devices)

WPS v2.5X | 1598

11.13.2.5 User Parameters

In order to open the configuration screen of the user parameters, just click on the User Parameters option on
the Parameter node of the project tree or click on the icon indicated on the tool bar of the parameter file.

Configuration Table.

On the user parameter configuration table, it is possible to define several attributes to the parameters, such as
description, minimum and maximum values, unit, digits, data type, etc.

NOTE!
These settings will be automatically displayed in the parameter table. However, to be sent to the
device, you need to download the resource.

Equipments (Devices)

WPS v2.5X | 1599

Table fields:

Parameter: User parameter identification.

Description: Description of the user parameter in the parameter table. On devices that have text-based
HMIs, the description is sent to the machine and displayed on the HMI.

Minimum: Minimum input value for parameter.

Maximum: Maximum input value for parameter.

Unit: Unit displayed on the device's HMI.

Default: Value loaded when restore factory default is selected.

Retentive: Retain value after rebooting devices.

Hexadecimal: Displays the value in hexadecimal.

Digits: Number of decimal digits for displaying value.

Datatype: Parameter datatype used by the ladder application.

Password: Enables password request by changing parameter value.

Equipments (Devices)

WPS v2.5X | 1600

Read only: It does not allow the writing of values in the parameter by the communication network or the HMI.
Writing is done only by the ladder application.

Display HMI: Displays the parameter in the HMI.

Performs modification: Confirmation options when changing the parameter:
o No confirmation: Does not prompt for confirmation when changing parameter.
o With confirmation and engine stopped: Request confirmation and allow change only with engine stopped.
o With confirmation: Prompt for confirmation when changing parameter.

Stopped motor: Perform change only with motor stopped.

Help: On devices that have text-based HMI, you can edit a help text for the parameter.

View the user parameter

In the parameter table, the user parameters will be shown as they are configured on the configuration screen.

11.14SSW900

11.14.1Description

The "Soft-Starter WEG 900" is a high-performance product that allows the starting/stopping control and
protection of three-phase induction motors. Thus it prevents mechanical shocks on the load, current peaks in
the supply line and damage to the motor.

Equipments (Devices)

WPS v2.5X | 1601

Refer to the user's manual of the SSW900 for further details about the product.

11.14.2I/O's

Hardware information can be found in the Manual of the SSW900 at the website www.weg.net.

Digital Inputs

Address Bit Modbus Tag Description

%IB0 0 16000 DI1 Digital Input 1

%IB0 1 16001 DI2 Digital Input 2

%IB0 2 16002 DI3 Digital Input 3

%IB0 3 16003 DI4 Digital Input 4

%IB0 4 16004 DI5 Digital Input 5

%IB0 5 16005 DI6 Digital Input 6

Digital Outputs

Address Bit Modbus Tag Description

%QB0 0 16000 DO1 Digital Output 1

%QB0 1 16001 DO2 Digital Output 2

%QB0 2 16002 DO3 Digital Output 3

Analog Outputs

Address Bit Modbus Tag Description

%QW1 -- 5001 AO1 Analog Output 1

11.14.3System Markers

The following variables contained in teh GLOBAL_SYSTEM group of the variables table, have the fixed tag.
The tag of system markers were divided into groups and subgroups, wher:do:

Grupos:

SSW: reading and writing variables of the SSW900 soft-starter.

Subgroups:
STS: reading variable (status);
CMD: writing variable (command).

Reading System Markers (Status)

http://www.weg.net

Equipments (Devices)

WPS v2.5X | 1602

Rading - Modbus Function 02 "Read Discrete Inputs"

Addres

s
Bit Modbus Tag Description

Ladder

%

SB6000
0 0 SYS_FREQ_2HZ Oscilator w ith frequency of 2 Hz

%

SB6000
1 1 SYS_PULSE_1SCAN Pulse during the f irst scan cycle

%

SB6000
2 2 SYS_FALSE Alw ays in 0

%

SB6000
3 3 SYS_TRUE Alw ays in 1

Equipments (Devices)

WPS v2.5X | 1603

Addres

s
Bit Modbus Tag Description

Logical Status

%

SB6002
0 16

SSW_STS_MOTOR_RUNN

ING
The soft-starter is turning the motor

%

SB6002
1 17

SSW_STS_GENERAL_EN

ABLED
The soft-starter is general enabled and ready to run motor

%

SB6002
2 18 SSW_STS_JOG_ACTIVE The JOG function is active

%

SB6002
3 19 SSW_STS_INITIAL_TEST Executing initial tests before starting the engine

%

SB6002
4 20 SSW_STS_ACCEL_RAMP Motor in acceleration ramp

%

SB6002
5 21

SSW_STS_FULL_VOLTA

GE
Full voltage is being applied to the motor

%

SB6002
6 22 SSW_STS_BYPASS The bypass contactor is closed

%

SB6002
7 23 SSW_STS_DECEL_RAMP Motor in deceleration ramp

%

SB6003
0 24

SSW_STS_LOC_REM_MO

DE
Soft-starter is in local or remote mode (0-Local, 1-Remote)

%

SB6003
1 25 SSW_STS_BRAKING Braking is active

%

SB6003
2 26

SSW_STS_REVERSING_D

IRECTION
The motor is reversing the direction of rotation

%

SB6003
3 27

SSW_STS_FWD_REV_DIR

ECTION
Motor running in reverse or direct direction (0-Reverse, 1-Direct)

%

SB6003
4 28

SSW_STS_START_DELA

Y
Time before startin the motor

%

SB6003
5 29

SSW_STS_RESTART_DEL

AY
Time after motor stop

%

SB6003
6 30

SSW_STS_ALARM_ACTI

VE
Soft-starter has an active alarm

%

SB6003
7 31

SSW_STS_FAULT_ACTIV

E
Soft-starter is in fault state

Equipments (Devices)

WPS v2.5X | 1604

Addres

s
Bit Modbus Tag Description

HMI keys

%

SB6004
0 32 SSW_STS_KEY_BACK BACK key pressed

%

SB6004
1 33 SSW_STS_KEY_UP UP key pressed

%

SB6004
2 34 SSW_STS_KEY_HELP HELP key pressed

%

SB6004
3 35

SSW_STS_KEY_DIRECTIO

N
DIRECTION key pressed

%

SB6004
4 36 SSW_STS_KEY_DOWN DOWN key pressed

%

SB6004
5 37

SSW_STS_KEY_LOC_RE

M
LOC/REM key pressed

%

SB6004
6 38 SSW_STS_KEY_START START (I) key pressed

%

SB6004
7 39 SSW_STS_KEY_JOG JOG key pressed

%

SB6005
0 40 SSW_STS_KEY_STOP STOP (0) key pressed

%

SB6005
1 41 SSW_STS_KEY_RIGHT RIGHT key pressed

%

SB6005
2 42 SSW_STS_KEY_ENTER ENTER key pressed

%

SB6005
3 43 SSW_STS_KEY_LEFT LEFT key pressed

Writing / Reading System Markers (Command)

Reading - Modbus Function 01 "Read Coils"
Writing - Modbus Function 05 "Write Single Coil" and 15 "Write Multiple Coils"

Equipments (Devices)

WPS v2.5X | 1605

Addres

s
Bit Modbus Tag Description

Logical Command

%

CB6006
0 0 SSW_CMD_RUN_STOP Run the motor (0-Stop, 1-Run)

%

CB6006
1 1

SSW_CMD_GENERAL_EN

ABLE
Enables the soft-starter allow ing the motor operation (0-Disable, 1-Enable)

%

CB6006
2 2 SSW_CMD_JOG Enables the JOG function (0-Disable, 1-Enable)

%

CB6006
3 3 SSW_CMD_DIRECTION Reverses the direction of rotation of motor

%

CB6006
4 4 SSW_CMD_LOC_REM Selects the soft-starter operation mode (0-Local, 1-Remote)

%

CB6006
7 7

SSW_CMD_FAULT_RESE

T
Executes the fault reset command

11.14.4Volatile Markers

Only the variables created in the GLOBAL group of the variables table, called Global Volatile Markers, and
that have a user-specified address, will be accessible by modbus protocol, when their are within the following
range:

TYPE
Address

Range
 Modbus Map Description

%MB: BOOL

0 - 7343

40000 - 49999

(Coil)

Each modbus address represents 1 bit of the address content.

After address 1250, the bit is not accessible via modbus.

%MB: BYTE, SINT, USINT

%MW: WORD, INT, DINT

%MD: DWORD, DINT, UDINT, REAL

8000 - 11671

(Register)

Each modbus address represents 2 bytes of the address content.

After address 7344, the data is not accessible via modbus.

Modbus functions with access to volatile global markers with address defined:
1. Read - Modbus Function 01 "Read Coils"
2. Read - Modbus Function 03 "Read Holding Registers"
3. Write - Modbus Function 05 "Write Single Coil"
4. Write - Modbus Function 06 "Write Single Register"
5. Write - Modbus Function 15 "Write Multiple Coils"
6. Write - Modbus Function 16 "Write Multiple Registers"

Example of volatile global markers declaration with address defined in variables table of the ladder editor:

Equipments (Devices)

WPS v2.5X | 1606

11.14.5Import from WLP

The function import from WLP is utilized to import Ladder developed on WLP software to equipment (device).

The import from WLP can be executed during the resource creation.

Equipments (Devices)

WPS v2.5X | 1607

1. To execute the import WLP function click the Import from WLP button and select the WLP project folder or
the WLP BKP file.

Equipments (Devices)

WPS v2.5X | 1608

Equipments (Devices)

WPS v2.5X | 1609

2. After import from WLP completed successfully click the Finish button to copy the imported files to new
resource.

11.14.6Parameters

11.14.6.1 Overview

The parameter configuration screen is used to configure and monitor all the parameters of the equipment,
including the user parameters.

NOTE!
The reading and writing of such parameters is done on this screen; only the user parameter
configuration must be sent the first time or whenever modified by means of the resource
download routine.

Below is an overview of the parameter configuration screen.

Equipments (Devices)

WPS v2.5X | 1610

1. Parameter files. In this part are all the parameter configuration files created by the user. Notice that when
the file features a person figure on the table, it means this parameter table contains hidden parameters/
group of parameters.

2. Group of parameters. This tree shows all the group of parameters. Notice that the same parameter can be
in more than one group, and when its value is modified, it will be modified in all the groups to which it
belongs.

3. Modified group of parameters. Group of parameters which contain the figure of a person on the table
means they have hidden parameters.

4. Commands. The commands are described below in the order they appear:
4.1.Unhide parameter: In case some parameter has been hidden, this button allows making it visible

again.
4.2.Hide parameter: Just select one or more parameters on the table and trigger this command to hide

them.
4.3.Save table: It saves the values of the parameters shown on the equipment screen; the sent values are

the ones in the User column. The flow is User -> Monitored (equipment)
4.4.Read table: It reads the parameters of the equipment shown in the Monitored column and saves them

in the parameter file in the User column. The flow is Monitored (equipment) -> User
4.5.User parameters: It opens a screen to edit the user parameters.
4.6.Filter: It opens a parameter filter option, and it can filter by parameter number or description.
4.7.User Parameters and Monitored Parameters. These two columns show the off-line and on-line

parameters, so to speak. The User column shows the values contained in the file located on the
computer and the Monitored column shows the values that are effectively saved on the equipment.
Whenever you use the Save Parameter option, the sent values will be from the User column to the
Monitored column, that is, File -> Equipment. In case of reading, the flow is the opposite, from the
Monitored column to the User column, that is, Equipment -> File. In case you wish to change the
values directly on the equipment without changing it in the file, just click on the monitored column,

Equipments (Devices)

WPS v2.5X | 1611

change the values and the modification will occur on-line.
5. Modified parameters: Whenever a parameter value in the User column is different from the Monitored

column, it will be shown in red.
6. Output. This screen shows error information in case they occur during the writing or reading of the

parameters.

11.14.6.2 Configuration

Below is the list of the required steps to create a parameter file.

1. Create a new parameter file.

2. Define a name for the parameter file

3. Configure which parameters you wish to view in your parameter table

Equipments (Devices)

WPS v2.5X | 1612

4. After performing the steps above, the parameter file will be created and the equipment can be
parameterized.

Equipments (Devices)

WPS v2.5X | 1613

11.14.6.3 Read and Write of Parameters

There are 3 (three) ways to do the reading and writing of the parameters: by means of table, selection and
group.

1. Table writing. The table writing command will send all visible parameters on the equipment screen. If and
error occurs during the sending of some specific parameter, a message will be shown on the output window
informing the error. It is important to notice that only visible parameters will be sent; therefore, it is necessary
attention to which node of the group of parameters tree you are viewing. Example: If you wish to write all of
them without filtering per group, just select the tree root.

Equipments (Devices)

WPS v2.5X | 1614

2. Table reading. The table reading command will read all the parameters of the equipment. If a error occurs
during the reading of some specific parameter, a message will be shown on the output window informing the
error. It is important to notice that only visible parameters will be read; therefore, it is necessary attention to
which node of the group of parameters tree you are viewing. Example: If you wish to read all of them without
filtering per group, just select the tree root.

Equipments (Devices)

WPS v2.5X | 1615

3. Reading/writing of specific parameters. In order to read/write one or more specific parameters, just
select them on the table, right click and choose the desired option: read or write parameter.

4. Reading/writing of group of parameters. In order to read/write only one group of parameters, just select
it on the group tree, right click and choose the desired option: read or write group.

Equipments (Devices)

WPS v2.5X | 1616

11.14.6.4 Hide/Unhide Parameters and Group of Parameters_2

The parameter can be hidden/unhidden in two ways: individually or in group.

1. Hide parameters. In order to hide a parameter individually, just right click on the desired parameters and
select the Hide Parameter option. You can also press the Delete key.

2. Unhide Parameters. In order to show hidden parameters, right click and choose the Unhide Parameters

Equipments (Devices)

WPS v2.5X | 1617

or press the Insert key. Then, a window will open and show the hidden parameters. Now, you just have to
select the desired parameters and confirm.
Note: The parameters shown on this new window are only those which belong to the current filter according to
the selection on the parameter group tree. In the figures below, the CAN group is selected; that means that
only the hidden parameters of this group will be shown.

Equipments (Devices)

WPS v2.5X | 1618

Equipments (Devices)

WPS v2.5X | 1619

3. Hide Group of Parameters. In order to hide a group of parameters, just select the group on the tree and
use the Hide Group option.

Equipments (Devices)

WPS v2.5X | 1620

Equipments (Devices)

WPS v2.5X | 1621

4. Unhide Group of Parameters. In order to show a hidden group of parameters, just select the root of the
group tree and select the Unhide Group option. A window will open showing the groups that are hidden; then
just select the group you wish to unhide.

Equipments (Devices)

WPS v2.5X | 1622

Equipments (Devices)

WPS v2.5X | 1623

Equipments (Devices)

WPS v2.5X | 1624

5. Hide and Show Parameters and Groups of Parameters. By means of this option, you have full control
of the parameters and groups of parameters. It is possible to hide and unhide individual parameters, multiple
parameters, individual groups and multiple groups in the same action.

Equipments (Devices)

WPS v2.5X | 1625

Equipments (Devices)

WPS v2.5X | 1626

11.14.6.5 User Parameters

In order to open the configuration screen of the user parameters, just click on the User Parameters option on
the Parameter node of the project tree or click on the icon indicated on the tool bar of the parameter file.

Configuration Table.

On the user parameter configuration table, it is possible to define several attributes to the parameters, such as
description, minimum and maximum values, unit, digits, data type, etc.

NOTE!
These settings will be automatically displayed in the parameter table. However, to be sent to the
device, you need to download the resource.

Equipments (Devices)

WPS v2.5X | 1627

Table fields:

Parameter: User parameter identification.

Description: Description of the user parameter in the parameter table. On devices that have text-based
HMIs, the description is sent to the machine and displayed on the HMI.

Minimum: Minimum input value for parameter.

Maximum: Maximum input value for parameter.

Unit: Unit displayed on the device's HMI.

Default: Value loaded when restore factory default is selected.

Retentive: Retain value after rebooting devices.

Hexadecimal: Displays the value in hexadecimal.

Digits: Number of decimal digits for displaying value.

Datatype: Parameter datatype used by the ladder application.

Password: Enables password request by changing parameter value.

Equipments (Devices)

WPS v2.5X | 1628

Read only: It does not allow the writing of values in the parameter by the communication network or the HMI.
Writing is done only by the ladder application.

Display HMI: Displays the parameter in the HMI.

Performs modification: Confirmation options when changing the parameter:
o No confirmation: Does not prompt for confirmation when changing parameter.
o With confirmation and engine stopped: Request confirmation and allow change only with engine stopped.
o With confirmation: Prompt for confirmation when changing parameter.

Stopped motor: Perform change only with motor stopped.

Help: On devices that have text-based HMI, you can edit a help text for the parameter.

View the user parameter

In the parameter table, the user parameters will be shown as they are configured on the configuration screen.

11.14.7Ladder

11.14.7.1 Coil

11.14.7.1.1 DIRECTCOIL

Logical block used to assign direct values of the output variables.

Equipments (Devices)

WPS v2.5X | 1629

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

Operation

The block transfers the value of A for the memory address corresponding to O1.

Diagram

Block Flowchart

Example

The above example keeps the digital output DO9 permanently connected, because the value of A in
this case is the value of the left bus which is always considered high logic level (TRUE).

11.14.7.1.2 INVERTEDCOIL

Logical block used for assigning values denied to output variables.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1630

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

Operation

The block transfers the denied value of A for the memory address corresponding to O1.

Diagram

Block Flowchart

Example

The above example disables the digital output DO3 when some of the digital inputs DI1 and DI2 are
with FALSE value. When both inputs are with a TRUE value, DO3 activates.

Equipments (Devices)

WPS v2.5X | 1631

11.14.7.1.3 RESETCOIL

Logical block used for indefinite disabling of output variables.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

Operation

When identifying a TRUE value in A, this block transfers a FALSE value to the memory address
corresponding to O1.
When identifying a FALSE value in A, this block performs no operation.

Diagram

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1632

The example above activates permanently the system control marker that enables end-of-message
character in RS232 communication to identify a TRUE level at the digital input DI5.

11.14.7.1.4 SETCOIL

Logical block used for indefinite enabling of output variables.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

Operation

When identifying a TRUE value in A, this block transfers the value of A for the memory address
corresponding to O1.
When identifying a FALSE value in A, this block performs no operation.

Diagram

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1633

Example

The example above activates permanently the system control marker that enables end-of-message
character in RS232 communication to identify a TRUE level at the digital input DI6.

11.14.7.1.5 TOGGLECOIL

Logical block used for output variables alternance.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT O1 BOOL Block log output

VAR TOGGLECOIL_INST_0 TOGGLECOIL Instance of access to block structure

Operation

When identifying a transition from FALSE to TRUE (leading edge) on A, the block reverses the status
of O1.

Diagram

Equipments (Devices)

WPS v2.5X | 1634

Block Flowchart

Example

The above example inverts the state of the digital output DO6 to each disabling the internal buzzer.

11.14.7.2 Communication Network

11.14.7.2.1 Modbus RTU

11.14.7.2.1.1 Modbus RTU Overview

Operation in the Modbus RTU Network - Master Mode

The CFW300 allows operation as a master for the Modbus RTU network. For this operation, it is necessary to
observe the following points:

Only interface RS485 allows operation as a network master.
It is necessary to program, in product configurations, the operation mode as "Master", besides the
communication rate, parity, and stop bits, which must be the same for the whole equipment in the network.
The Modbus RTU network master does not have an address, so the address configured in the CFW300 is
not used.
Sending and receiving telegrams via RS485 interface using the Modbus RTU is programmed by using blocks
in Ladder programming language. It is necessary to know the available blocks and the Ladder programming
software in order to be able to program the network master.

Equipments (Devices)

WPS v2.5X | 1635

The following functions are available for the sending of requisitions by the Modbus master:
o Function 01: Read Coils
o Function 02: Read Discrete Inputs
o Function 03: Read Holding Registers
o Function 04: Read Input Registers
o Function 05: Write Single Coil
o Function 06: Write Single Register
o Function 15: Write Multiple Coils
o Function 16: Write Multiple Registers

Blocks to program the master

In order to control and monitor the Modbus RTU communication using the CFW300, the following blocks were
developed, and they must be used when programming in Ladder.

11.14.7.2.1.2 MB_MasterControlStatus

Block that allows monitoring various statuses of the Modbus RTU network master.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1636

Variable Type Name Data Type Description

VAR_INPUT
Execute BOOL Block enabling

DisableComm BOOL Disables Modbus RTU communication

VAR_OUTPUT

Done BOOL Output enabling

CommDisabled BOOL Disabled communication f lag

TxCounter WORD UINT Counter of requests sent

RxCounter WORD UINT Counter of telegrams received

NoAnswerCounter WORD UINT Counter of requests not answ ered

ErrorResponseCounter WORD UINT
Counter of responses received w ith error

information

LastErrorSlaveAddress BYTE USINT
Slave address in w hich the last communication

error w as detected

LastErrorResult BYTE USINT

Operation result of the last communication error

received

(0 = No error)

(4 – Response Timeout)

(5 = Slave returned error)

LastErrorCode BYTE USINT Code of the last communication error received

Operation

This block remains active while Execute is at TRUE level, updating its outputs according to the
monitoring of the master and input requests. When Execute receives FALSE level, the inputs are
ignored and the outputs are zeroed. The Done output receives TRUE level when Execute has TRUE
level and block finished its execution.

A TRUE level DisableComm disables the Modbus RTU communication and resets the status counters
and markers of the master. These markers and counters are displayed in the output block each
having some data corresponding to its description. Their values are also cleared at shutdown of the
master.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1637

Example

The example above requests status data of the Modbus RTU network master, and allows disabling
communication through DISABLE. The block ends successfully, Done output is activated.

11.14.7.2.1.3 MB_ReadBinary

Block that performs a reading of up to 128 binary data (via Read Coils or Read Discrete Inputs) of a
slave on the Modbus RTU network.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1638

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

SlaveAddress BYTE Slave address

Function# BYTE Reading function code

InitialDataAddress WORD Initial bit address of the data to be read

NumberOfData BYTE Number of bits to be read (1 to 128)

Timeout# WORD
Maximum w aiting time for the slave response

[ms]

Offset# BOOL
Offset Indication in InitialDataAddress, i.e., need

to subtract 1 from this number

VAR_OUTPUT

Done BOOL Output enabling

Active BOOL Aw aiting response f lag

Busy BOOL
Flag indicating the RS485 interface is busy w ith

another request

Error BOOL Error in the execution f lag

ErrorID BYTE Identif ier of the occurred error

Value BOOL Variable that stores the received data

VAR MB_READBINARY_INST_0 MB_READBINARY Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it checks whether the Modbus slave RTU in
specified address in SlaveAddress is free to send data (Busy variable at FALSE level). If so, it sends
the reading request of a number of bits indicated by NumberOfData in InitialDataAddress address
using chosen function in Function# and sets the Active output, resetting it when receiving the
response from the slave. The received data is stored in the Value variable. If the slave is not free, the
block waits Busy go to FALSE level to resubmit the request.

NOTE!
If Execute goes to FALSE level and Busy is still at TRUE level, the request is canceled.

NOTE!
Value is an array of size equal to NumberOfData. It is important to check this compatibility not to
generate errors in the block.

Equipments (Devices)

WPS v2.5X | 1639

When Execute has FALSE value, Done remains FALSE. The Done output is only activated when the
block finishes executing successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Code Description

0 Executed successfully

1 Invalid input data

2 Master not enabled

4 Timeout in slave response

5 Slave returned error

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1640

Equipments (Devices)

WPS v2.5X | 1641

Example

The above example requests reading of a number of binary data described by DATA_COUNT
positioned in the INIT Modbus RTU slave of SLAVE address through the Read Discrete Input function.
These data are forwarded to VALUE. The block ends successfully, Done output is activated.

11.14.7.2.1.4 MB_ReadRegister

Block that performs a reading of up to 64 16-bit registers (via Read Holding Registers or Read Input
Registers) of a slave on the Modbus RTU network.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1642

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

SlaveAddress BYTE Slave address

Function# BYTE Reading function code

InitialDataAddress WORD Initial register address to be read

NumberOfData BYTE Number of registers to be read (1 to 64)

Timeout# WORD
Maximum w aiting time for the slave response

[ms]

Offset# BOOL
Offset Indication in InitialDataAddress, i.e., need

to subtract 1 from this number

VAR_OUTPUT

Done BOOL Output enabling

Active BOOL Aw aiting response f lag

Busy BOOL
Flag indicating the RS485 interface is busy w ith

another request

Error BOOL Error in the execution f lag

ErrorID BYTE Identif ier of the occurred error

Value

BYTE SINT USINT

WORD UINT INT

DWORD UDINT

DINT REAL

Variable that stores the received data

VAR
MB_READREGISTER

_INST_0
MB_READREGISTER Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it checks whether the Modbus RTU slave in
specified address in SlaveAddress is free to send data (Busy variable at FALSE level). If so, it sends
the reading request of a number of registers indicated by NumberOfData in InitialDataAddress address
using chosen function in Function# and sets the Active output, resetting them when receiving the
response from the slave. The received data is stored in the Value variable. If the slave is not free, the
block waits Busy go to FALSE level to resubmit the request.

NOTE!
If Execute goes to FALSE level and Busy is still at TRUE level, the request is canceled.

NOTE!
Value is an array of number of bits NumberOfData multiplied by 16. That is, if NumberOfData is
16, Value can be an array of 32 BYTE positions, 16 WORD positions or 8 DWORD positions. It
is important to check this compatibility not to generate errors in the block.

When Execute has FALSE value, Done remains FALSE. The Done output is only activated when the
block finishes executing successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Equipments (Devices)

WPS v2.5X | 1643

Code Description

0 Executed successfully

1 Invalid input data

2 Master not enabled

4 Timeout in slave response

5 Slave returned error

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1644

Equipments (Devices)

WPS v2.5X | 1645

Example

The above example requests reading of a number of binary data described by DATA_COUNT
positioned in the INIT in the Modbus RTU slave of SLAVE address through the Read Input Register
function. These data are forwarded to VALUE. The block ends successfully, Done output is activated.

11.14.7.2.1.5 MB_SlaveStatus

Block that allows monitoring the status of 4 slaves of the Modbus RTU network.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

ErrorsToSetOffline# BYTE
Amount of errors that the master must identify until it

considers communication w ith an off line slave

AddressSlave1# BYTE Slave address 1 to be monitored

AddressSlave2# BYTE Slave address 2 to be monitored

AddressSlave3# BYTE Slave address 3 to be monitored

AddressSlave4# BYTE Slave address 4 to be monitored

VAR_OUTPUT

Done BOOL Output enabling

GeneralOffline BOOL
Flag indicating any one of the monitored

communication is off line

Slave1Offline BOOL Flag of off line status slave 1

Slave2Offline BOOL Flag of off line status slave 2

Slave3Offline BOOL Flag of off line status slave 3

Slave4Offline BOOL Flag of off line status slave 4

Equipments (Devices)

WPS v2.5X | 1646

Operation

This block remains active while Execute is at TRUE level, updating its outputs according to the
number of errors recorded for each slave. When Execute receives FALSE level, the inputs are ignored
and the outputs are zeroed. The Done output receives TRUE level when Execute has TRUE level and
block finished its execution.

The ErrorsToSetOffline # input allows registering the number of errors identified in a slave that will
feature an offline communication. AddressSlave inputs allow inserting four slave addresses to be
monitored. When this monitored slave reports the programmed number of errors, its corresponding
SlaveOffline output is set to TRUE level. If any of SlaveOffline outputs is at TRUE level, GeneralOffline
also receives TRUE level.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1647

The above example checks the number of error responses sent by the slaves 2, 4, 6 and 8 of the
Modbus RTU. If any of them is greater than 5, its SX_OFF status is led to TRUE level. The block ends
successfully, Done output is activated.

11.14.7.2.1.6 MB_WriteBinary

Block that performs a writing of up to 128 binary data (via Write Single Coil or Write Multiple Coils) in
a slave on the Modbus RTU network.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1648

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

SlaveAddress BYTE Slave address

Function# BYTE Writing function code

InitialDataAddress WORD Initial bit address w here the data w ill be w ritten

NumberOfData BYTE Number of bits to be w ritten (1 to 128)

Timeout# WORD Maximum w aiting time for the slave response [ms]

Offset# BOOL
Offset Indication in InitialDataAddress, i.e., need to

subtract 1 from this number

Value BOOL Variable that stores the data to be w ritten

VAR_OUTPUT

Done BOOL Output enabling

Active BOOL Aw aiting response f lag

Busy BOOL
Flag indicating the RS485 interface is busy w ith

another request

Error BOOL Error in the execution f lag

ErrorID BYTE Identif ier of the occurred error

VAR
MB_WRITEBINARY

_INST_0
MB_WRITEBINARY Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it checks whether the Modbus RTU slave in
specified address in SlaveAddress is free to send data (Busy variable at FALSE level). If so, it sends
the writing request of a number of bits indicated by NumberOfData in InitialDataAddress address
using chosen function in Function# and sets the Active output, resetting it when receiving the
response from the slave. If the slave is not free, the block waits Busy go to FALSE level to resubmit
the request.

NOTE!
If Execute goes to FALSE level and Busy is still at TRUE level, the request is canceled.

NOTE!
Value is an array of size equal to NumberOfData. It is important to check this compatibility not to
generate errors in the block.

When Execute has FALSE value, Done remains FALSE. The Done output is only activated when the
block finishes executing successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Equipments (Devices)

WPS v2.5X | 1649

Code Description

0 Executed successfully

1 Invalid input data

2 Master not enabled

4 Timeout in slave response

5 Slave returned error

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1650

Equipments (Devices)

WPS v2.5X | 1651

Example

The example above requests written data contained in VALUE, with size described by DATA_COUNT,
at addresses positioned from INIT on Modbus RTU slave at address SLAVE using the function Write
Single Coil. The block ends successfully, Done output is activated.

11.14.7.2.1.7 MB_WriteRegister

Block that performs a reading of up to sixteen 16-bit registers (via Write Single Register or Write
Multiple Registers) of a slave on the Modbus RTU network.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1652

Variable Type Name Data Type Description

VAR_INPUT

Execute BOOL Block enabling

SlaveAddress BYTE Slave address

Function# BYTE Writing function code

InitialDataAddress WORD Initial register address to be w ritten

NumberOfData BYTE Number of registers to be w ritten (1 to 16)

Timeout# WORD
Maximum w aiting time for the slave response

[ms]

Offset# BOOL
Offset Indication in InitialDataAddress, i.e.,

need to subtract 1 from this number

Value

BYTE SINT USINT

WORD UINT INT

DWORD UDINT DINT

REAL

Variable that stores the data to be w ritten

VAR_OUTPUT

Done BOOL Output enabling

Active BOOL Aw aiting response f lag

Busy BOOL
Flag indicating the RS485 interface is busy

w ith another request

Error BOOL Error in the execution f lag

ErrorID BYTE Identif ier of the occurred error

VAR
MB_WRITEREGISTER

_INST_0
MB_WRITEREGISTER Instance of access to block structure

Operation

When this block detects a leading edge on Execute, it checks whether the Modbus RTU slave in
specified address in SlaveAddress is free to send data (Busy variable at FALSE level). If so, it sends
the writing request of Value values in a number of registers indicated by NumberOfData in
InitialDataAddress address using chosen function in Function# and sets the Active output, resetting it
when receiving the response from the slave. If the slave is not free, the block waits Busy go to FALSE
level to resubmit the request.

NOTE!
If Execute goes to FALSE level and Busy is still at TRUE level, the request is canceled.

NOTE!
Value is an array of number of bits NumberOfData multiplied by 16. That is, if NumberOfData is
16, Value can be an array of 32 BYTE positions, 16 WORD positions or 8 DWORD positions. It
is important to check this compatibility not to generate errors in the block.

When Execute has FALSE value, Done remains FALSE. The Done output is only activated when the
block finishes executing successfully, remaining at TRUE level until Execute receives FALSE.

If there is any error in the execution, the Error output is enabled and ErrorID displays an error code
according to the table below.

Equipments (Devices)

WPS v2.5X | 1653

Code Description

0 Executed successfully

1 Invalid input data

2 Master not enabled

4 Timeout in slave response

5 Slave returned error

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1654

Equipments (Devices)

WPS v2.5X | 1655

Example

The example above requests written data contained in VALUE, with size described by DATA_COUNT,
at addresses positioned from INIT on Modbus RTU slave at address SLAVE using the function Write
Single Register. The block ends successfully, Done output is activated.

11.14.7.3 Compare

11.14.7.3.1 COMP_EQ

Block that compares the values of Value1 and Value2, enabling the output Q if both are equal.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of equality

Operation

When this block has a TRUE value in EN, it sends to the output Q the TRUE value if Value1 and
Value2 are the same. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1656

Example

The example above checks equality between VALUE1 and VALUE2. Since both variables have the
same value, the Q output is activated.

The example above checks equality between VALUE1 and VALUE2. Since both variables have the
same value, the Q output is activated. Notice that the types of the input variables can be different
without causing execution problems.

Equipments (Devices)

WPS v2.5X | 1657

The example above checks equality between VALUE1 and VALUE2. Since both variables have
different values, the Q output is disabled.

11.14.7.3.2 COMP_GE

Block that compares the values of Value1 and Value2, enabling the output Q if Value1 is higher than
or equal to Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of equality or majority of Value1

Operation

When this block has a TRUE value in EN it sends the Q output to the TRUE value if Value1 is higher
than or equal to Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1658

Example

The example above checks equality or majority of VALUE1 in relation to VALUE2. Since VALUE1
has lower value than VALUE2, the Q output is disabled.

The example above checks equality or majority of VALUE1 in relation to VALUE2. Since both
variables have the same value, the Q output is activated.

Equipments (Devices)

WPS v2.5X | 1659

The example above checks equality or majority of VALUE1 in relation to VALUE2. Since VALUE1
has higher value than VALUE2, the Q output is activated.

11.14.7.3.3 COMP_GT

Block that compares the values of Value1 and Value2, enabling the output Q if Value1 is higher than
Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of majority of Value1

Operation

When this block has a TRUE value in EN, it sends to the Q output the TRUE value if Value1 is higher
than Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1660

Example

The example above checks the majority of VALUE1 in relation to VALUE2. Since VALUE1 has lower
value than VALUE2, the Q output is disabled.

The example above checks the majority of VALUE1 in relation to VALUE2. Since both variables have
the same value, the Q output is disabled.

Equipments (Devices)

WPS v2.5X | 1661

The example above checks the majority of VALUE1 in relation to VALUE2. Since VALUE1 has higher
value than VALUE2, the Q output is activated.

11.14.7.3.4 COMP_LE

Block that compares the values of Value1 and Value2, enabling the output Q if Value1 is lower than or
equal to Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of equality or minority of Value1

Operation

When this block has a TRUE value in EN, it sends to the Q output the TRUE value if Value1 is lower
than or equal to Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1662

Example

The example above checks equality or minority of VALUE1 in relation to VALUE2. Since VALUE1
has lower value than VALUE2, the Q output is activated.

The example above checks equality or minority of VALUE1 in relation to VALUE2. Since both
variables have the same value, the Q output is activated.

Equipments (Devices)

WPS v2.5X | 1663

The example above checks equality or minority of VALUE1 in relation to VALUE2. Since VALUE1
has higher value than VALUE2, the Q output is disabled.

11.14.7.3.5 COMP_LT

Block that compares the values of Value1 and Value2, enabling the output Q if Value1 is lower than
Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of minority of Value1

Operation

When this block has a TRUE value in EN, it sends to the Q output the TRUE value if Value1 is lower
than or equal to Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1664

Example

The example above checks minority of VALUE1 in relation to VALUE2. Since VALUE1 has lower
value than VALUE2, the Q output is activated.

The example above checks the minority of VALUE1 in relation to VALUE2. Since both variables have
the same value, the Q output is disabled.

Equipments (Devices)

WPS v2.5X | 1665

The example above checks the minority of VALUE1 in relation to VALUE2. Since VALUE1 has higher
value than VALUE2, the Q output is disabled.

11.14.7.3.6 COMP_NE

Block that compares the values of Value1 and Value2, enabling the Q output if Value1 is different from
Value2.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT Q BOOL Indicator of inequality

Operation

When this block has a TRUE value in EN, it sends to the Q output the TRUE value if Value1 is
different from Value2. Otherwise, Q receives FALSE.

When EN has FALSE value, Q remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1666

Example

The example above checks inequality between VALUE1 and VALUE2. Since both variables have
different values, the Q output is activated.

The example above checks equality between VALUE1 and VALUE2. Since both variables have the
same value, the Q output is disabled.

11.14.7.4 Contact

11.14.7.4.1 NCCONTACT

Normally closed contact.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1667

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT I1 BOOL Block control input

Operation

When variable I1 is with TRUE value, B receives FALSE.
When variable I1 is with FALSE value, B receives the value of A.

NOTE!
Watch out for series and parallel associations of contacts. Refer to section Contact Logic for
further information.

Diagram

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1668

Example

The above example performs the transfer of the opposite value of digital input DI1 to the digital output
DO2.

11.14.7.4.2 NOCONTACT

Normally open contact.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_OUTPUT I1 BOOL Block control input

Operation

When variable I1 is with FALSE value, B receives FALSE.
When variable I1 is with TRUE value, B receives the value of A.

NOTE!
Watch out for series and parallel associations of contacts. Refer to section Contact Logic for
further information.

Diagram

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1669

Example

The above example performs the transfer of the value of digital input DI1 to the digital output DO2.

11.14.7.4.3 NTSCONTACT

Falling edge transition contact.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT I1 BOOL Block control input

VAR NTSCONTACT_INST_0 NTSCONTACT Instance of access to block structure

Operation

At the instant the variable I1 transitions from TRUE to FALSE (falling edge or negative edge
transition), B receives the value of A for a scan cycle.
At all other times, B receives the FALSE value.

NOTE!
Watch out for series and parallel associations of contacts. Refer to section Contact Logic for
further information.

Diagram

Equipments (Devices)

WPS v2.5X | 1670

Block Flowchart

Example

The above example resets the digital output DO1 if the SHIFT key is pressed or a positive pulse on
the digital input DI2 is given.

11.14.7.4.4 PTSCONTACT

Leading edge transition contact.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1671

Block Structure

Variable Type Name Data Type Description

VAR_INPUT I1 BOOL Block control input

VAR PTSCONTACT_INST_0 PTSCONTACT Instance of access to block structure

Operation

At the instant the variable I1 transitions from FALSE to TRUE (leading edge or positive edge
transition), B receives the value of A for a scan cycle.
At all other times, B receives the FALSE value.

NOTE!
Watch out for series and parallel associations of contacts. Refer to section Contact Logic for
further information.

Diagram

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1672

Example

The above example resets the digital output DO1 if the SHIFT key is pressed and a positive pulse on
the digital input DI2 is given.

11.14.7.5 Control

11.14.7.5.1 PID

Block that performs the function of a discrete PID controller. From the input variables, it calculates the
corresponding controller output.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1673

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

SetPoint REAL Automatic reference (pre-control)

ManualSetPoint REAL Forced reference (post control)

SelectSetPoint BOOL Selects w hich reference to use

Feedback REAL Feedback loop variable

MinimumOutput REAL Minimum value of the controller output

MaximumOutput REAL Maximum value of the controller output

Kp REAL Proportional gain

Ki REAL Integral gain

Kd REAL Derivative gain

TauSetPoint# REAL Time constant of the automatic reference in put f ilter

Type# BYTE Controller type

Action# BYTE Control action

Ts# UINT Sampling time [ms]

VAR_OUTPUT
ENO BOOL Output enabling

Output REAL Controller output

VAR PID_INST_0 PID Instance of access to block structure

Operation

On the positive transition edge in EN, Output receives zero value, and the block executes its
functionality as EN is at TRUE level.

When enabled, this block performs a routine PID control with the Kp, Ki and Kd parameters chosen.
The PID topology used may be the Academic or Parallel, depending on what is chosen in Type#.

Academic Form:

Parallel Form:

Equipments (Devices)

WPS v2.5X | 1674

The levels of the output signal of the controller are saturated at value MinimumOutput and
MaximumOutput. The SelectSetPoint input level FALSE causes the SetPoint reference be adopted,
allowing the controller maintains control over the process. When SelectSetPoint goes to TRUE level,
the controller has no more domain, and ManualSetPoint becomes to be considered the output signal
of the controller.

Action# will define the feedback operation. If Action# is DIRECT, the operation will be SetPoint –
Feedback. If Action# is REVERSE, the operation will be Feedback – SetPoint.

Feedback receives the process variable considered as the plant output. Ts# receives the sampling
time for the controller and # TauSetPoint receives the time constant for the input filter of the automatic
reference.

When EN has FALSE value, Output remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

NOTE!
Effects of the alteration of gains on the process

If Kp decreases, the process becomes slower; generally more stable or less oscillating; it has
less overshoot.
If Kp increases, the process responds faster; it may become more unstable or more
oscillating; it has more overshoot.
If Ki decreases, the process becomes slower, lagging to reach the "SetPoint"; it becomes
more stable or less oscillating; it has less overshoot.
If Ki increases, the process becomes faster, quickly reaching the "SetPoint"; it becomes more
unstable or more oscillating; it has more overshoot.
If Kd decreases, the process becomes slower; it has less overshoot.
If Kd increases, it has more overshoot.

Equipments (Devices)

WPS v2.5X | 1675

NOTE!
How to improve the performance of the process through the adjustment of gains (valid for the
Academic PID)

If the performance of the process is almost good, but the overshoot is a bit high, try to: (1)
decrease Kp 20%, (2) decrease Ki 20% and/or (3) decrease Kd 50%.
If the performance of the process is almost good, but it does not have overshoot and lags to
reach the "SetPoint", try to: (1) increase Kp 20%, (2) increase Ki 20% and/or (3) increase Kd
50%.
If the performance of the process is good, but the process output is varying too much, try to:
(1) increase Kd 50%, (2) decrease Kp 20%.
If the performance of the process is bad, i.e. after start up, the transitory lasts several periods
of oscillation that reduce very slowly or never reduce at all, try to: (1) decrease Kp 50%.
If the performance of the process is bad, i.e. after start up it slowly moves towards the
"SetPoint" without overshoot, but is still very far and the process output is less than the rated
value, try to: (1) increase Kp 50%, (2) increase Ki 50%, (3) increase Kd 70%.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1676

Equipments (Devices)

WPS v2.5X | 1677

Example

The above example creates a loop of a digital PID form with sampling time 50 ms, using the
constants KP, KI and KD for control. Automatic reference SETPOINT, filtered by a first order filter with
time constant of 0:01 is used. The error signal is calculated as the difference between the filtered
reference and variable SAIDA_PLANTA. The controller output is saturated between the values 0.1 and
2.5 and sent to the variable ENTRADA_PLANTA.

11.14.7.6 Conversion

11.14.7.6.1 BOOL

11.14.7.6.1.1 BYTE_TO_BOOL

Block that performs the conversion of a BYTE value into a BOOL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BYTE USINT SINT Value in BYTE

VAR_OUTPUT
ENO BOOL End of operation

Result BOOL Value in BOOL

Operation

When this block has a TRUE value in EN, it interprets the Value value as BYTE and converts it into
BOOL, storing in Result.

Equipments (Devices)

WPS v2.5X | 1678

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

The examples above perform the conversion of VALUE variable, in BYTE, into a BOOL value storing

Equipments (Devices)

WPS v2.5X | 1679

the final result in RESULT. The block ends with success and ENO output is activated.

11.14.7.6.1.2 DWORD_TO_BOOL

Block that performs the conversion of a DWORD value into a BOOL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT
ENO BOOL End of operation

Result BOOL Value in BOOL

Operation

When this block has a TRUE value in EN, it interprets the Value value as DWORD and converts it into
BOOL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1680

Example

The examples above perform the conversion of VALUE variable, in DWORD, into a BOOL value
storing the final result in RESULT. The block ends with success and ENO output is activated.

11.14.7.6.1.3 REAL_TO_BOOL

Block that performs the conversion of a REAL value into a BOOL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value in REAL

VAR_OUTPUT
ENO BOOL End of operation

Result BOOL Value in BOOL

Operation

When this block has a TRUE value in EN, it interprets the Value value as REAL and converts it into
BOOL, storing in Result.

When EN has FALSE value, Result remains unchanged.

Equipments (Devices)

WPS v2.5X | 1681

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1682

The examples above perform the conversion of VALUE variable, in REAL, into a BOOL value storing
the final result in RESULT. The block ends with success and ENO output is activated. Notice in the
last example that the values very close to the machine epsilon may result in an interpretation of the
FALSE value.

11.14.7.6.1.4 WORD_TO_BOOL

Block that performs the conversion of a WORD value into a BOOL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT
ENO BOOL End of operation

Result BOOL Value in BOOL

Operation

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it into
BOOL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1683

Example

The examples above perform the conversion of VALUE variable, in WORD, into a BOOL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.14.7.6.2 BYTE

11.14.7.6.2.1 BOOL_TO_BYTE

Block that performs the conversion of a BOOL value into a BYTE value.

Equipments (Devices)

WPS v2.5X | 1684

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BOOL Value in BOOL

VAR_OUTPUT
ENO BOOL End of operation

Result BYTE USINT SINT Value in BYTE

Operation

When this block has a TRUE value in EN, it interprets the Value value as BOOL and converts it into
BYTE, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1685

The examples above perform the conversion of variable VALUE, in BOOL, into a BYTE value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.14.7.6.2.2 DWORD_TO_BYTE

Block that performs the conversion of a DWORD value into a BYTE value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT
ENO BOOL End of operation

Result BYTE USINT SINT Value in BYTE

Operation

When this block has a TRUE value in EN, it interprets the Value value as DWORD and converts it into
BYTE, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1686

Example

The examples above perform the conversion of variable VALUE, in DWORD, into a BYTE value storing
the final result in RESULT. The block ends with success and ENO output is activated. Notice that
only the eight least significant bits are taken into account.

11.14.7.6.2.3 REAL_TO_BYTE

Block that performs the conversion of a REAL value into a BYTE value.

Equipments (Devices)

WPS v2.5X | 1687

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value in REAL

VAR_OUTPUT
ENO BOOL End of operation

Result BYTE USINT SINT Value in BYTE

Operation

When this block has a TRUE value in EN, it interprets the Value value as REAL and converts it into
BYTE, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1688

The examples above perform the conversion of variable VALUE, in REAL, into a BYTE value storing
the final result in RESULT. The block ends with success and ENO output is activated. Notice that the
results are truncated in decimal and only the eight least significant bits are taken into account.

11.14.7.6.2.4 WORD_TO_BYTE

Block that performs the conversion of a WORD value into a BYTE value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT
ENO BOOL End of operation

Result BYTE USINT SINT Value in BYTE

Operation

Equipments (Devices)

WPS v2.5X | 1689

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it into
BYTE, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1690

The examples above perform the conversion of variable VALUE, in WORD, into a BYTE value storing
the final result in RESULT. The block ends with success and ENO output is activated. Notice that
only the eight least significant bits are taken into account.

11.14.7.6.3 DWORD

11.14.7.6.3.1 BOOL_TO_DWORD

Block that performs the conversion of a BOOL value into a DWORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BOOL Value in BOOL

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as BOOL and converts it into
DWORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1691

Example

The examples above perform the conversion of VALUE variable, in BOOL, into a DWORD value
storing the final result in RESULT. The block ends with success and ENO output is activated.

11.14.7.6.3.2 BYTE_TO_DWORD

Block that performs the conversion of a BYTE value into a DWORD value.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1692

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BYTE USINT SINT Value in BYTE

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as BYTE and converts it into
DWORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1693

The examples above perform the conversion of variable VALUE, in BYTE, into a DWORD value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.14.7.6.3.3 REAL_TO_DWORD

Block that performs the conversion of a REAL value into a DWORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value in REAL

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as REAL and converts it into
DWORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1694

Example

The examples above perform the conversion of variable VALUE, in REAL, into a DWORD value storing
the final result in RESULT. The block ends with success and ENO output is activated. Note that the
results are truncated in decimal and only the thirty-two least significant bits are taken into account.

11.14.7.6.3.4 WORD_TO_DWORD

Block that performs the conversion of a WORD value into a DWORD value.

Equipments (Devices)

WPS v2.5X | 1695

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT
ENO BOOL End of operation

Result DWORD UDINT DINT Value in DWORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it into
DWORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1696

The examples above convert the VALUE variable, in WORD, into a DWORD value storing the final
result in RESULT. The block ends with success and ENO output is activated.

11.14.7.6.4 REAL

11.14.7.6.4.1 BOOL_TO_REAL

Block that performs the conversion of a BOOL value into a REAL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BOOL Value in BOOL

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in REAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as BOOL and converts it into
REAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1697

Example

The examples above perform the conversion of variable VALUE, in BOOL, into a REAL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.14.7.6.4.2 BYTE_TO_REAL

Block that performs the conversion of a BYTE value into a REAL value.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1698

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BYTE USINT SINT Value in BYTE

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in REAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as BYTE and converts it into
REAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1699

The examples above perform the conversion of variable VALUE, in BYTE, into a REAL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.14.7.6.4.3 DWORD_TO_REAL

Block that performs the conversion of a DWORD value into a REAL value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in REAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as DWORD and converts it into
REAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1700

Example

The examples above perform the conversion of variable VALUE, in DWORD, into a REAL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.14.7.6.4.4 WORD_TO_REAL

Block that performs the conversion of a WORD value into a REAL value.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1701

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value WORD UINT INT Value in WORD

VAR_OUTPUT
ENO BOOL End of operation

Result REAL Value in REAL

Operation

When this block has a TRUE value in EN, it interprets the Value value as WORD and converts it into
REAL, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1702

The examples above perform the conversion of variable VALUE, in WORD, into a REAL value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.14.7.6.5 WORD

11.14.7.6.5.1 BOOL_TO_WORD

Block that performs the conversion of a BOOL value into a WORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BOOL Value in BOOL

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as BOOL and converts it into
WORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1703

Example

The examples above perform the conversion of VALUE variable, in BOOL, into a WORD value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.14.7.6.5.2 BYTE_TO_WORD

Block that performs the conversion of a BYTE value into a WORD value.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1704

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value BYTE USINT SINT Value in BYTE

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as BYTE and converts it into
WORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1705

The examples above perform the conversion of variable VALUE, in BYTE, into a WORD value storing
the final result in RESULT. The block ends with success and ENO output is activated.

11.14.7.6.5.3 DWORD_TO_WORD

Block that performs the conversion of a DWORD value into a WORD value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value DWORD UDINT DINT Value in DWORD

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as DWORD and converts it into
WORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1706

Example

The examples above convert the VALUE variable, in DWORD, into a WORD value storing the final
result in RESULT. The block ends with success and ENO output is activated. Notice that only the
sixteen least significant bits are taken into account.

11.14.7.6.5.4 REAL_TO_WORD

Block that performs the conversion of a REAL value into a WORD value.

Equipments (Devices)

WPS v2.5X | 1707

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value in REAL

VAR_OUTPUT
ENO BOOL End of operation

Result WORD UINT INT Value in WORD

Operation

When this block has a TRUE value in EN, it interprets the Value value as REAL and converts it into
WORD, storing in Result.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1708

The examples above convert the VALUE variable, in DWORD, into a WORD value storing the final
result in RESULT. The block ends with success and ENO output is activated. Note that the results
are truncated in decimal and only the sixteen least significant bits are taken into account.

11.14.7.7 Counter

11.14.7.7.1 CTD

Countdown block of input pulses.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

CD BOOL Pulse identif ier

LD BOOL Loads the value of PV in CV

PV WORD UINT Value of initial configuration

VAR_OUTPUT
Q BOOL Counter zeroed f lag

CV WORD UINT Current count value

VAR CTD_INST_0 CTD Instance of access to block structure

Operation

Equipments (Devices)

WPS v2.5X | 1709

When this block identifies a leading edge in CD, it decrements the CV variable until it is zero. While
CV equals zero, the output Q remains at TRUE level. By detecting high-level LD, the block loads the
PV value in CV.

Block Flowchart

Operation Diagram

Equipments (Devices)

WPS v2.5X | 1710

Example

The above example shows the initial conditions of routine. As CV has a value of zero, the Q output is
enabled.

The value of the PV variable was changed to 20, but not yet loaded.

Equipments (Devices)

WPS v2.5X | 1711

By identifying TRUE level in LD, the block loads the PV value to CV. Since this value is greater than
zero, the Q output is disabled.

At each leading edge identified in CD, the value of COUNT is decremented until it reaches zero, when
the Q output is enabled.

11.14.7.7.2 CTU

Block for gradual count of input pulses.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

CU BOOL Pulse identif ier

R BOOL Loads the zero value in CV

PV WORD UINT Maximum count value

VAR_OUTPUT
Q BOOL Counter overrun f lag

CV WORD UINT Current count value

VAR CTU_INST_0 CTU Instance of access to block structure

Operation

When this block identifies a leading edge in CD, it increments the CV variable until it is equal to PV.
While CV equals PV, the output Q remains at TRUE level. By detecting high-level R, the block loads
the zero value in CV.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1712

Operation Diagram

Equipments (Devices)

WPS v2.5X | 1713

Example

The above example shows the initial conditions of routine. Since CV has a lower value than of PV, the
Q output is disabled.

At each leading edge identified in CU, the value of CV is incremented until it reaches the PV value,
when the Q output is enabled.

Equipments (Devices)

WPS v2.5X | 1714

By identifying TRUE level in R, the block loads the zero value to CV. Since this value is lower than of
PV, the Q output is disabled.

11.14.7.7.3 CTUD

Block for gradual count and countdown of input pulses.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

CU BOOL Pulse identif ier for incremental

CD BOOL Pulse identif ier for decremental

R BOOL Loads the zero value in CV

LD BOOL Loads the value of PV in CV

PV WORD UINT Reference value

VAR_OUTPUT

ENO BOOL Output enabling

QU BOOL Counter overrun f lag

QD BOOL Counter zeroed f lag

CV WORD UINT Current count value

VAR CTUD_INST_0 CTUD Instance of access to block structure

Operation

When this block has a TRUE value in EN, it acts as a CTD block and block CTU at the same time
acting on the same CV counter. That is: increments CV until it reaches PV to the leading edges in
CU and decrements CV until it reaches zero to the leading edges in CD. A positive transition in R
carries zero in CV, while a leading edge in LD loads the PV value in CV. If CV has zero value, QD
receives TRUE, and if CV has value equal to PV, QU receives TRUE.

Equipments (Devices)

WPS v2.5X | 1715

The ENO value forwards to the next Ladder block the EN value.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1716

Equipments (Devices)

WPS v2.5X | 1717

Operation Diagram

Example

Equipments (Devices)

WPS v2.5X | 1718

The example above shows the disabled block, with all its internal variables zeroed. Although the
external controls are activated, these values are not forwarded to the instance of the block.

When activated, the block identifies the value of PRESET, loading it in PV, and identifies that the
output is at zero, enabling the QD output. When execution is completed, the ENO output is activated.

At each leading edge identified in CU, the value of CV is incremented until it reaches the PV value,
when the QU output is enabled. When execution is completed, the ENO output is activated.

At each leading edge detected in CD, the CV value is decremented. When CV is a value between
zero and PV, both QD and QU outputs are deactivated. When execution is completed, the ENO
output is activated.

Equipments (Devices)

WPS v2.5X | 1719

A TRUE value in R resets CV, while a TRUE value in LD loads the value of PV to CV. As we can see,
R prevails over LD, leaving CV and enabling the QD output. When execution is completed, the ENO
output is activated.

11.14.7.8 Data Transfer

11.14.7.8.1 DEMUX

Block that creates 16 new BOOL variables from the decomposition of a WORD variable.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Word WORD UINT INT Input variable of 15 bits

VAR_OUTPUT
ENO BOOL End of operation

Bit0 – Bit15 BOOL Bit of the corresponding position of Word

Operation

Equipments (Devices)

WPS v2.5X | 1720

When this block has a TRUE value in EN, it decomposes the input variable in Word 15 Boolean
values stored in Bit0 to Bit15 variables. Bit0 corresponds to the LSB (least significant bit) and Bit15
corresponds to the MSB (most significant bit).

When EN has FALSE value, output variables remain unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1721

The example above decomposes the value of MYWORD in Boolean values, which are stored in the
output variables BIT0 to Bit15. The block ends successfully and the ENO output is activated.

11.14.7.8.2 ILOAD

Block which indirectly loads the value of a variable and transfers it to Value.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Group# BYTE Group w here the variable is stored

DataType# BYTE Data type of the selected variable

Address DWORD UDINT DINT Address of the global variable, as its group

VAR_OUTPUT

ENO BOOL End of operation

Value
As selected in

DataType#
Value of the selected variable

Operation

When this block has a TRUE value in EN, it loads, in Value, the of the Address variable belonging to
the Group# group, as the selected DataType#.

Equipments (Devices)

WPS v2.5X | 1722

When EN has FALSE value, Value remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

The above example loads the value of the address 40 of group 2 (GLOBAL_SYSTEM%S), which
represents the status of ESC key in UINT format for the VALUE variable. The block ends with
success and ENO output is activated.

11.14.7.8.3 ILOADBOOL

Block that indirectly loads the value of a bit in a global variable address.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1723

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Group# BYTE Group w here the variable is stored

Address DWORD UDINT DINT Address of the global variable, as its group

Bit BYTE USINT SINT Position of the bit to be checked

VAR_OUTPUT
ENO BOOL End of operation

Value BOOL Value of the bit selected by the input arguments

Operation

When this block has a TRUE value in EN, it loads, in Value, the Bit contents of the Address variable
belonging to the Group# group.

When EN has FALSE value, Value remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1724

Example

The above example loads the value of bit 1 of the address 24 of group 2 (S GLOBAL_SYSTEM%),
which represents the status of ESC key for the VALUE variable. The block ends with success and
ENO output is activated.

11.14.7.8.4 ISTORE

Block that indirectly loads the Value value in a variable.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Group# BYTE Group w here the variable is stored

DataType# BYTE Data type of the selected variable

Address DWORD UDINT DINT Address of the global variable, as its group

Value

Depending on the

selection of the

DataType#

Value to be w ritten in the selected variable

VAR_OUTPUT ENO BOOL End of operation

Operation

When this block has a TRUE value in EN, it loads the Value value in the contents of the Address
variable belonging to the Group# group, as the selected DataType#.

When EN has FALSE value, Value remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Equipments (Devices)

WPS v2.5X | 1725

Block Flowchart

Example

The example above stores the VALUE value in WORD format in address 444 of group 3
(GLOBAL_SYSTEM% C), which represents the index of the communication port Modbus TCP. The
block ends with success and ENO output is activated.

11.14.7.8.5 ISTOREBOOL

Block that indirectly loads the Value value in a bit in a global variable address.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1726

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Group# BYTE Group w here the variable is stored

Address DWORD UDINT DINT Address of the global variable, as its group

Bit BYTE USINT SINT Position of the bit to be modif ied

Value BOOL New value of the selected bit

VAR_OUTPUT ENO BOOL End of operation

Operation

When this block has a TRUE value in EN, it loads the Value value in the Bit contents of the Address
variable belonging to the Group# group.

When EN has FALSE value, Value remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1727

Example

The example above stores the value of VALUE in bit 7 of the address 121 in group 3
(GLOBAL_SYSTEM% C), which represents the disable command of CANopen communication. The
block ends with success and ENO output is activated.

11.14.7.8.6 MUX

Block that creates a new WORD variable from the concatenation of 16 BOOL variables.

Equipments (Devices)

WPS v2.5X | 1728

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Bit0 – Bit15 BOOL Bit of the corresponding position in the new w ord

VAR_OUTPUT
ENO BOOL End of operation

Word WORD UINT INT New w ord formed from the input bits

Operation

When this block has a TRUE value in EN, it concatenates Boolean values of the input variables and
stores this value in the variable Word. Bit0 corresponds to LSB (least significant bit) and Bit15
corresponds to the MSB (most significant bit).

When EN has FALSE value, Word remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1729

Example

The above example concatenates the Boolean values of the input bits of the block to form the output
word stored in MYWORD. The block ends with success and ENO output is activated.

Equipments (Devices)

WPS v2.5X | 1730

11.14.7.8.7 SEL

Block that replicates to the output the value of an input variable (Value0 or Value1) according to the
Selector selection.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Selector BOOL Variable that selects the input

Value0
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Multiplexed input number 1

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Multiplexed input number 2

VAR_OUTPUT

ENO BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Output value selected

Operation

When this block has a TRUE value in EN, it replicates to the Result variable the Value0 value if
selector is FALSE or the Value1 value if Selector is TRUE.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1731

Example

The above example uses the SELECTOR variable as multiplexing channel selector. When it is at
FALSE level, the RESULT output gets the value of VALUE0. The block ends successfully and the
ENO output is activated.

Equipments (Devices)

WPS v2.5X | 1732

The above example uses the SELECTOR variable as multiplexing channel selector. When it is at
FALSE level, the RESULT output gets the value of VALUE0. The block ends successfully and the
ENO output is activated. Note that the binary pattern has been maintained even though the decimal
representation is corrupted, since DWORD does not accept negative values.

The above example uses the SELECTOR variable as multiplexing channel selector. When it is at
TRUE level, the RESULT output gets the value of VALUE1. The block ends successfully and the ENO
output is activated. Note that the binary pattern has been maintained even though the decimal
representation is corrupted, since DWORD does not accept negative values.

11.14.7.8.8 STORE

Block that performs direct storage of data from a source to a destination.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1733

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

SRC
BYTE USINT SINT WORD UINT

INT DWORD DINT DINT REAL
Data source

VAR_OUTPUT

ENO BOOL End of operation

DST
BYTE USINT SINT WORD UINT

INT DWORD DINT DINT REAL
Data destination

Operation

When this block has a TRUE value in EN, it stores the contents from SRC into DST.

NOTE!
SRC and DST must have data types of the same size.

When EN has FALSE value, DST remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1734

The example above stores the value of the variable SRC in DST. The block ends with success and
ENO output is activated.

The example above stores the value of the variable SRC in DST. The block ends with success and
ENO output is activated. Note that the binary pattern is maintained between variables of different
types.

11.14.7.8.9 USERERR

Block that generates an alarm or fault with the number programmed by the user.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

CODE WORD UINT
Error code generated

(750 - 799)

TYPE BYTE

Error type generated

(0 - Alarm)

(1 - Fault)

VAR_OUTPUT ENO BOOL Success in the generation of error

VAR USERERR_INST_0 USERERR Instance of access to block structure

Operation

When this block has a TRUE value in EN, it generates an alarm or equipment failure, depending on
the type defined in TYPE with CODE code.

The value of ENO informs if the generation of alarm or fault has been executed successfully.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1735

Example

The above example, when identifying TRUE level in DI1, generates a fault with the code 774 and sets
the DO1 output.

11.14.7.9 Filter

11.14.7.9.1 LOWPASS

Block that filters the input using a low pass filter of first order and inserts the result in the output.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1736

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Input REAL Input signal

Tau REAL Filter time constant

Ts# UINT Sampling time [ms]

VAR_OUTPUT
ENO BOOL Output enabling

Output REAL Filter output

VAR LOWPASS_INST_0 LOWPASS Instance of access to block structure

Operation

When this block has a TRUE value in EN, filters the input value of Input using a low pass first order
filter described by Tau and Ts#, inserting the result in Output. On the leading edge of EN, Output
receives zero.

When EN has FALSE value, Output remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1737

The above example causes OUTPUT, by identifying a leading edge in EN, to display a behavior of first
order with time constant equal to Tau and the sampling time of 2 ms, in order to achieve the reference
set to INPUT. At each calculation completed successfully, the ENO output is activated.

11.14.7.10Logic

11.14.7.10.1 Logic Bit

11.14.7.10.1.1 RESETBIT

Logical block used to perform reset of a specific bit in a field.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_IN_OUT Data

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable w hose bit w ill be changed

VAR_INPUT
EN BOOL Block enabling

Position BYTE USINT Position of the bit that w ill be changed

VAR_OUTPUT DONE BOOL Operation successful

Operation

This block when it has a TRUE value in EN, resets the bit indicated in Position in the Data variable
that is forwarded to the output already with its updated value.

When EN has FALSE value, Data remains unchanged.

Equipments (Devices)

WPS v2.5X | 1738

The DONE variable receives the same EN value, except when there is an error in the reset of the bit,
then getting a FALSE value.

NOTE!
It is important to notice that Position is within the range of values of bits corresponding to variable
type in Data. For example: if Data is a BYTE, it has 8 bits, and Position must contain a value
between 0 and 7.

Block Flowchart

Example

The example above resets the bit of AUX zero position, whose initial value is 200 (1100 1000, in
binary). Since this bit already had FALSE value, nothing has changed.

Equipments (Devices)

WPS v2.5X | 1739

The example above resets the bit in position three of AUX by changing its binary value and, therefore,
its decimal representation.

The example above resets the bit in position nine of AUX. Since AUX is a variable BYTE type, it has
only eight bits. Thus, the example above creates a runtime error in the block and therefore the output
is not enabled.

11.14.7.10.1.2 SETBIT

Logical block used to perform the set of a specific bit in a field.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_IN_OUT Data

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable w hose bit w ill be changed

VAR_INPUT
EN BOOL Block enabling

Position BYTE USINT Position of the bit that w ill be changed

VAR_OUTPUT DONE BOOL Operation successful

Operation

This block when it has a TRUE value in EN, sets the bit indicated in Position in the Data variable that
is forwarded to the output already with its updated value.

When EN has FALSE value, Data remains unchanged.

The DONE variable receives the same EN value, except when there is an error in the set of the bit,
then getting a FALSE value.

NOTE!
It is important to notice that Position is within the range of values of bits corresponding to variable
type in Data. For example: if Data is a BYTE, it has 8 bits, and Position must contain a value
between 0 and 7.

Equipments (Devices)

WPS v2.5X | 1740

Block Flowchart

Example

The example above sets the bit of AUX zero position, whose initial value is 153 (1001 1001, in binary).
Since this bit already had TRUE value, nothing has changed.

The example above sets the bit in position three of AUX by changing its binary value and, therefore,
its decimal representation.

Equipments (Devices)

WPS v2.5X | 1741

The example above sets the bit in position fifteen of AUX. Since AUX is a variable BYTE type, it has
only eight bits. Thus, the example above creates a runtime error in the block and therefore the output
is not enabled.

11.14.7.10.1.3 TESTBIT

Logical block that revolutions the value of a specific bit in a field.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

Data

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable w hose bit w ill be tested

EN BOOL Block enabling

Position BYTE USINT Position of the bit that w ill be changed

VAR_OUTPUT Q BOOL Value of the tested bit

Operation

This block when it has a TRUE value in EN, sends to the output Q the bit value indicated in Position
in the Data variable.

When EN has FALSE value, Q also receives FALSE.

NOTE!
It is important to notice that Position is within the range of values of bits corresponding to variable
type in Data. For example: if Data is a BYTE, it has 8 bits, and Position must contain a value
between 0 and 7.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1742

Example

The example above sets the bit value of zero position of AUX, whose initial value is 74 (0100 1010 in
binary) to the output Q. Since this bit has value 0, the output is disabled.

The example above sets the value of the bit of position three of AUX to the output Q. Since this bit
has value 1, the output is enabled.

The example above sets the bit value of position ten of AUX to output Q. Since AUX is a variable of
BYTE type, it has only eight bits. Thus, the example above creates a runtime error in the block and
therefore the output is disabled.

Equipments (Devices)

WPS v2.5X | 1743

11.14.7.10.2 Logic Boolean

11.14.7.10.2.1 AND

Logical block that performs an boolean "and" operation between two variables, storing the result in a
third one.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

Value2

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the “and” Boolean operation of
input variables Value1 and Value2.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1744

Example

The example above performs an "and" Boolean operation between AUX and AUX2, storing the result in
AUX3.

11.14.7.10.2.2 NOT

Block that performs a logical operation of boolean "not" in a variable, storing the result in another.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1745

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Reference variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the denied Boolean value of
the Value input variable.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

The example above performs a boolean "not" operation in AUX, storing the result in AUX2.

Equipments (Devices)

WPS v2.5X | 1746

11.14.7.10.2.3 OR

Logical block that performs an Boolean "or" operation between two variables, storing the result in a
third one.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

Value2

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the “or” Boolean operation of
input variables Value1 and Value2.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1747

Example

The example above performs an "or" Boolean operation between AUX and AUX2, storing the result in
AUX3.

11.14.7.10.2.4 XNOR

Logical block that performs an Boolean "not exclusive or" operation between two variables, storing the
result in a third one.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1748

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

Value2

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the “denied exclusive or”
Boolean operation of input variables Value1 and Value2.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1749

The example above performs a "denied exclusive or" Boolean operation between AUX and AUX2,
storing the result in AUX3.

11.14.7.10.2.5 XOR

Logical block that performs an Boolean "exclusive or" operation between two variables, storing the
result in a third one.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

Value2

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable for the operation

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the “xor” Boolean operation of
input variables Value1 and Value2.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1750

Example

The example above performs a "xor" Boolean operation between AUX and AUX2, storing the result in
AUX3.

11.14.7.10.3 Logic Rotate

11.14.7.10.3.1 ROL

Block that performs a logical left rotation operation in a value passed by Value, storing the result in
Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1751

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable to undergo rotation

Shift BYTE USINT Shift index

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of logical left shifts, according to the Shift value. The most significant bits
that are being discarded are returned to the least significant bits, characterizing the rotation.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1752

Example

The above example performs a logical left shift by one position in the VALUE variable whose initial
value is -100 (1001 1100 in binary). The discarded bits on the left are reinserted on the right. The final
result (0011 1001 in binary) is stored in RESULT.

The above example performs a logical left rotation by five positions in the VALUE variable whose initial
value is 21 (0001 0101 in binary). The discarded bits on the left are reinserted on the right. The final
result (1010 0010 in binary) is stored in RESULT.

11.14.7.10.3.2 ROR

Block that performs a logical right rotation operation in a value passed by Value, storing the result in
Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1753

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable to undergo rotation

Shift BYTE USINT Shift index

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of logical right shifts, according to the Shift value. The least significant bits
that are being discarded are returned to the most significant bits, characterizing the rotation.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1754

Example

The above example performs a logic right shift by one position in the VALUE variable whose initial
value is -128 (1000 0000 in binary). The discarded bits on the right are reinserted on the left. The final
result (0100 0000 in binary) is stored in RESULT. Notice that the sign is not preserved in this
operation.

The above example performs a logical right rotation by one position in the VALUE variable whose
initial value is -127 (1000 0001 in binary). The discarded bits on the right are reinserted on the left. The
final result (1100 0000 in binary) is stored in RESULT.

11.14.7.10.4 Logic Shift

11.14.7.10.4.1 ASHL

Block that performs a binary left shift operation in a value passed by Value, storing the result in
Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1755

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value SINT INT DINT Variable to undergo shift

Shift BYTE USINT Shift index

VAR_OUTPUT
ENO BOOL End of operation

Result SINT INT DINT Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of arithmetic left shifts, according to the Shift value.

NOTE!
All arithmetic shifts implemented maintain the sign of the variable.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1756

Description of exemple.

Description of exemple.

11.14.7.10.4.2 ASHR

Block that performs arithmetic left shift operation in a value passed by Value, storing the result in
Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value SINT INT DINT Variable to undergo shift

Shift BYTE USINT Shift index

VAR_OUTPUT
ENO BOOL End of operation

Result SINT INT DINT Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of arithmetic right shifts, according to the Shift value.

Equipments (Devices)

WPS v2.5X | 1757

NOTE!
All arithmetic shifts implemented maintain the sign of the variable.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

The above example performs an arithmetic right shift by three positions in the VALUE variable whose
initial value is 52 (0011 0100 in binary). The bits on the right are being discarded, and on the left new
zeros are inserted. The final result (0000 0110 in binary) is stored in RESULT.

Equipments (Devices)

WPS v2.5X | 1758

The above example performs an arithmetic right shift by two positions in the VALUE variable whose
initial value is -79 (1011 0001 in binary). The bits on the right will be discarded and new ones on the
left are inserted, since the arithmetic right shifts preserve the sign of the variable. The final result
(1111 0110 in binary) is stored in RESULT.

The above example performs an arithmetic right shift by thirteen positions in the VALUE variable
whose initial value is -128 (1000 0000 in binary). The bits on the right are being discarded, and on the
left new ones are inserted. The final result (1111 1111 in binary) is stored in RESULT.

11.14.7.10.4.3 SHL

Block that performs a binary logical left shift operation in a value passed by Value, storing the result
in Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1759

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable to undergo shift

Shift BYTE USINT Shift index

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of logical shifts left, according to the Shift value.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1760

The above example performs a logical right shift by four positions in the VALUE variable whose initial
value is 56 (0011 1000 in binary). The bits on the left are being discarded, and on the left new zeros
are inserted. The final result (0011 1000 0000 in binary) is stored in RESULT.

The above example performs a logical right shift by four positions in the VALUE variable whose initial
value is -56 (1100 1000 in binary). The bits on the left are being discarded, and on the left new zeros
are inserted. The final result (1100 1000 0000 in binary) is stored in RESULT. Since RESULT is SINT
type, it only accepts the first eight bits (1000 0000).

11.14.7.10.4.4 SHR

Block that performs a binary logical right shift operation in a value passed by Value, storing the result
in Result.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1761

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable to undergo shift

Shift BYTE USINT Shift index

VAR_OUTPUT

ENO BOOL End of operation

Result

BYTE USINT SINT

WORD UINT INT

DWORD UDINT DINT

Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of the Value variable
after performing a number of logical shifts right, according to the Shift value.

When EN has FALSE value, Result remains unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1762

The above example performs a logical right shift by two positions in the VALUE variable whose initial
value is 124 (0111 1100 in binary). The bits on the right are being discarded, and on the left new zeros
are inserted. The final result (0001 1111 in binary) is stored in RESULT.

The above example performs a logical right shift by three positions in the VALUE variable whose initial
value is -98 (1001 1110 in binary). The bits on the right are being discarded, and on the left new zeros
are inserted. The final result (0001 0011 in binary) is stored in RESULT.

11.14.7.11Math

11.14.7.11.1 Math Basic

11.14.7.11.1.1 ABS

Block that calculates the Value module, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Reference variable for the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the absolute value of the

Equipments (Devices)

WPS v2.5X | 1763

Value variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not
set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the absolute value of the VALUE variable whose initial value is -45,
storing the final result, 45, in RESULT.

The above example calculates the absolute value of the VALUE variable whose initial value is -45. The
final result, 128, cannot be stored in RESULT, because it is outside the limits of accepted values by
SINT type. Therefore, RESULT remains unchanged and the output is disabled.

Equipments (Devices)

WPS v2.5X | 1764

11.14.7.11.1.2 ADD

Block that calculates the sum of the values of Value1 and Value2, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First addend of the operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second addend of the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the sum of Value1 and Value2
variables. If no errors, the Done variable is set. If there is any error in the operation, Done is not set,
staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1765

Example

The above example calculates the sum of VALUE 1 and VALUE2 variables, storing the final result in
RESULT.

The above example calculates the sum of VALUE 1 and VALUE2 variables, storing the final result in
RESULT. Notice that the block accepts arguments of both signs.

Equipments (Devices)

WPS v2.5X | 1766

The above example calculates the sum of VALUE1 and VALUE2 variables. The final result -170
cannot be stored in RESULT, because it is outside the limits of accepted values by SINT type.
Therefore, RESULT remains unchanged and the output is disabled.

11.14.7.11.1.3 DIV

Block that calculates the division of the values of Value1 and Value2, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Dividend of the operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Divisor of the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the division of Value1 and
Value2 variables. The value stored will be the exact division if Result is REAL, or, in other cases, only
the quotient. If no errors, the Done variable is set. If there is any error in the operation, Done is not
set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1767

Example

The above example calculates the division of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Since RESULT is SINT type, only the quotient is stored in it.

The above example calculates the division of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Since RESULT is of REAL type, the exact value of the division is stored in it.

Equipments (Devices)

WPS v2.5X | 1768

The above example calculates the division of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Since RESULT is SINT type, only the quotient is stored in it. Notice that the block
accepts arguments of both signs.

The above example calculates the division of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Since VALUE2 is zero, the block generates a runtime error, RESULT remains unchanged
and the output is disabled.

11.14.7.11.1.4 MOD

Block that calculates the remainder of the values of Value1 and Value2, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT
Dividend of the operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT
Divisor of the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT

Variable that stores the result of the

operation

Operation

Equipments (Devices)

WPS v2.5X | 1769

When this block has a TRUE value in EN, it sends to the Result output the remainder of Value1 and
Value2 variables. If no errors, the Done variable is set. If there is any error in the operation, Done is
not set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the remainder of VALUE 1 and VALUE2 variables, storing the final
result in RESULT.

Equipments (Devices)

WPS v2.5X | 1770

The above example calculates the remainder of VALUE 1 and VALUE2 variables, storing the final
result in RESULT. Notice that the block accepts arguments of both signs.

The above example calculates the remainder of VALUE 1 and VALUE2 variables, storing the final
result in RESULT. Since VALUE2 is zero, the block generates a runtime error, RESULT remains
unchanged and the output is disabled.

11.14.7.11.1.5 MUL

Block that calculates the multiplication of the values of Value1 and Value2, storing the result in
Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First factor of the operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second factor of the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

Equipments (Devices)

WPS v2.5X | 1771

When this block has a TRUE value in EN, it sends to the Result output the multiplication of Value1
and Value2 variables. If no errors, the Done variable is set. If there is any error in the operation, Done
is not set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the product of VALUE 1 and VALUE2 variables, storing the final result
in RESULT.

Equipments (Devices)

WPS v2.5X | 1772

The above example calculates the product of VALUE 1 and VALUE2 variables, storing the final result
in RESULT. Notice that the block accepts arguments of both signs.

The above example calculates the product of VALUE1 and VALUE2 variables. The final result 224
cannot be stored in RESULT, because it is outside the limits of accepted values by SINT type.
Therefore, RESULT remains unchanged and the output is disabled.

11.14.7.11.1.6 NEG

Block that calculates the opposite (i.e., the product with -1) of a value passed by Value, storing the
result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Reference variable for the operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the opposite of the Value
variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not set,
staying in FALSE status, while Result remains with its value unchanged.

Equipments (Devices)

WPS v2.5X | 1773

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the opposite of the VALUE variable whose initial value is 21, storing
the final result, -21, in RESULT.

The above example calculates the opposite of the VALUE variable whose initial value is -56, storing
the final result, 56, in RESULT.

Equipments (Devices)

WPS v2.5X | 1774

]

The above example calculates the opposite of the VALUE variable whose initial value is -128. The final
result, 128, cannot be stored in RESULT, because it is outside the limits of accepted values by SINT
type. Therefore, RESULT remains unchanged and the output is disabled.

11.14.7.11.1.7 SUB

Block that calculates the subtraction between the Value1 and Value2 values, storing the result in
Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Minuend of operation

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Subtrahend of operation

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL

Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the subtraction of Value1 and
Value2 variables. If no errors, the Done variable is set. If there is any error in the operation, Done is
not set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1775

Example

The above example calculates the subtraction of VALUE 1 and VALUE2 variables, storing the final
result in RESULT.

The above example calculates the subtraction of VALUE 1 and VALUE2 variables, storing the final
result in RESULT. Notice that the block accepts arguments of both signs.

Equipments (Devices)

WPS v2.5X | 1776

The above example calculates the subtraction of VALUE1 and VALUE2 variables. The final result 141
cannot be stored in RESULT, because it is outside the limits of accepted values by SINT type.
Therefore, RESULT remains unchanged and the output is disabled.

11.14.7.11.2 Math Extended

11.14.7.11.2.1 ALOG10

Block that calculates the antilogarithm (exponent with base 10) of the Value value, storing the result
in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the antilogarithm of the Value
variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not set,
staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1777

Example

The above example calculates the antilogarithm of the VALUE variable, storing the final result in
RESULT. The block ends with success and Done output is activated.

The above example calculates the antilogarithm of the VALUE variable, storing the final result in
RESULT. The indicated value is the minimum input value for which the block revolutions a nonzero
result. The block ends with success and Done output is activated.

The above example calculates the antilogarithm of the VALUE variable, storing the final result in

Equipments (Devices)

WPS v2.5X | 1778

RESULT. Below the minimum values cause the block to return a null value. The block ends with
success and Done output is activated.

The above example calculates the antilogarithm of the VALUE variable, storing the final result in
RESULT. The indicated value is the maximum input value for which the block revolutions a valid result.
The block ends with success and Done output is activated.

The above example calculates the antilogarithm of the VALUE variable, storing the final result in
RESULT. Values higher than the maximum cause the block to generate an error, the RESULT output
remains unchanged and Done output is disabled.

11.14.7.11.2.2 EXP

Block that calculates the exponential of the Euler number "and" raised to the value of Value, storing
the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the exponent of the Euler
number "and" raised to the Value variable. If no errors, the Done variable is set. If there is any error in
the operation, Done is not set, staying in FALSE status, while Result remains with its value
unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Equipments (Devices)

WPS v2.5X | 1779

Block Flowchart

Example

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
The block ends with success and Done output is activated.

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
The indicated value is the minimum input value for which the block revolutions a nonzero result. The
block ends with success and Done output is activated.

Equipments (Devices)

WPS v2.5X | 1780

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
Values below the minimum cause the block to return to a null value. The block ends with success
and Done output is activated.

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
The indicated value is the maximum input value for which the block revolutions a valid result. The
block ends with success and Done output is activated.

The above example calculates the exponent of the VALUE variable, storing the final result in RESULT.
Values higher than the maximum cause the block to generate an error, the RESULT output remains
unchanged and Done output is disabled.

11.14.7.11.2.3 LN

Block that calculates the natural logarithm of the Value value, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the natural logarithm of the
Value variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not
set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Equipments (Devices)

WPS v2.5X | 1781

Block Flowchart

Example

The above example calculates the natural logarithm of the VALUE variable, storing the final result in
RESULT. The block ends with success and Done output is activated.

The above example calculates the natural logarithm of the VALUE variable, storing the final result in
RESULT. The block generates a runtime error, since VALUE has value zero, and Done output is
disabled.

Equipments (Devices)

WPS v2.5X | 1782

11.14.7.11.2.4 LOG10

Block that calculates the common logarithm (base 10) of the Value value, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the common logarithm of the
Value variable. If no errors, the Done variable is set. If there is any error in the operation, Done is not
set, staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1783

Example

The above example calculates the common logarithm of the VALUE variable, storing the final result in
RESULT. The block ends with success and Done output is activated.

The above example calculates the common logarithm of the VALUE variable, storing the final result in
RESULT. The block generates a runtime error, since VALUE has negative value, and Done output is
disabled.

11.14.7.11.2.5 POW

Block that calculates the value of Value raised to the exponent Power, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value REAL Base of the operation

Power REAL Exponent of the operation

VAR_OUTPUT

Done BOOL End of operation

Result REAL
Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the value of Value raised to
the exponent Power. If no errors, the Done variable is set. If there is any error in the operation, Done
is not set, staying in FALSE status, while Result remains with its value unchanged.

Equipments (Devices)

WPS v2.5X | 1784

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the value of VALUE raised to the POWER variable, storing the final
result in RESULT. The block ends with success and Done output is activated.

The above example calculates the value of VALUE raised to the POWER variable, storing the final
result in RESULT. The block ends with success and Done output is activated.

Equipments (Devices)

WPS v2.5X | 1785

The above example calculates the value of VALUE raised to the POWER variable, storing the final
result in RESULT. Since the result is higher than the maximum supported by REAL type, the block
generates an error and Done output is disabled.

11.14.7.11.2.6 ROUND

Block that rounds the value of Value, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT

Done BOOL End of operation

Result REAL
Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the rounded value of Value. If
no errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Compatibility

Device Version

PLC300 2.10 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1786

Example

The above example rounds the value of the VALUE variable, storing the final result in RESULT.
Decimals less than 0.5 are discarded. The block ends with success and Done output is activated.

The above example rounds the value of the VALUE variable, storing the final result in RESULT.
Decimals greater than or equal to 0.5 promote unity value immediately above. The block ends with
success and Done output is activated.

11.14.7.11.2.7 SQRT

Block that calculates the square root value of Value, storing the result in Result.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1787

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the square root value of
Value. If no errors, the Done variable is set. If there is any error in the operation, Done is not set,
staying in FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1788

The above example calculates the square root value of the VALUE variable, storing the final result in
RESULT. The block ends with success and Done output is activated.

The above example calculates the square root value of the VALUE variable, storing the final result in
RESULT. The block generates a runtime error, since VALUE has negative value, and Done output is
disabled.

11.14.7.11.2.8 TRUNC

Block that truncates the value of Value, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Reference variable for the operation

VAR_OUTPUT

Done BOOL End of operation

Result REAL
Variable that stores the result of the

operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the truncated value of Value. If
no errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Compatibility

Equipments (Devices)

WPS v2.5X | 1789

Device Version

PLC300 2.10 or higher

SCA06 2.00 or higher

Block Flowchart

Example

The above example truncates the value of the VALUE variable, storing the final result in RESULT.
Decimals are discarded. The block ends with success and Done output is activated.

11.14.7.11.3 Math Trigonometry

11.14.7.11.3.1 ACOS

Block that calculates the arccosine of Value, storing the result in Angle.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1790

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value of cosine

VAR_OUTPUT
Done BOOL End of operation

Angle REAL Value of the angle w hose cosine is equal to Value (in radians)

Operation

When this block has a TRUE value in EN, it sends to the Angle output the arccosine of Value. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Angle remains with its value unchanged.

When EN has FALSE value, Angle remains unchanged and Done remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1791

The above example calculates the arc, in radians, whose cosine is the VALUE variable, storing the
final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the arc, in radians, whose cosine is the VALUE variable, storing the
final result in RESULT. The block generates a runtime error, since VALUE has value inferior to 1, and
Done output is disabled.

11.14.7.11.3.2 ASIN

Block that calculates the arcsine of Value, storing the result in Angle.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value of sine

VAR_OUTPUT
Done BOOL End of operation

Angle REAL Value of the angle w hose sine is equal to Value (in radians)

Operation

When this block has a TRUE value in EN, it sends to the Angle output the arcsine of Value. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Angle remains with its value unchanged.

When EN has FALSE value, Angle remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1792

Example

The above example calculates the arc, in radians, whose sine is the VALUE variable, storing the final
result in RESULT. The block ends with success and Done output is activated.

The above example calculates the arc, in radians, whose sine is the VALUE variable, storing the final
result in RESULT. The block generates a runtime error, since VALUE has value superior to 1, and
Done output is disabled.

Equipments (Devices)

WPS v2.5X | 1793

11.14.7.11.3.3 ATAN

Block that calculates the arctangent of Value, storing the result in Angle.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Value REAL Value of tangent

VAR_OUTPUT
Done BOOL End of operation

Angle REAL Value of the angle w hose tangent is equal to Value (in radians)

Operation

When this block has a TRUE value in EN, it sends to the Angle output the arctangent of Value. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Angle remains with its value unchanged.

When EN has FALSE value, Angle remains unchanged and Done remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1794

The above example calculates the arc, in radians, whose tangent is the VALUE variable, storing the
final result in RESULT. The arc, for positive values, is always in the first quadrant. The block ends with
success and Done output is activated.

The above example calculates the arc, in radians, whose tangent is the VALUE variable, storing the
final result in RESULT. The arc, for negative values, is always in the fourth quadrant. The block ends
with success and Done output is activated.

11.14.7.11.3.4 ATAN2

Block that calculates the arctangent of Y/X, storing the result in Angle.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

X REAL Parameter X of the function

Y REAL Parameter Y of the function

VAR_OUTPUT
Done BOOL End of operation

Angle REAL Value of the angle w hose tangent is equal to (Y/X) (in radians)

Operation

When this block has a TRUE value in EN, it sends to the Angle output the arctangent of Y/X. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Angle remains with its value unchanged.

When EN has FALSE value, Angle remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1795

Example

The above example calculates the arc, in radians, whose tangent is the Y/X variable, storing the final
result in RESULT. The arc, for positive values of X and Y, is always in the first quadrant. The block
ends with success and Done output is activated.

The above example calculates the arc, in radians, whose tangent is the Y/X variable, storing the final

Equipments (Devices)

WPS v2.5X | 1796

result in RESULT. The arc, for negative values of X and positive values of Y, is always in the second
quadrant. The block ends with success and Done output is activated.

The above example calculates the arc, in radians, whose tangent is the Y/X variable, storing the final
result in RESULT. The arc, for negative values of X and Y, is always in the third quadrant. The block
ends with success and Done output is activated.

The above example calculates the arc, in radians, whose tangent is the Y/X variable, storing the final
result in RESULT. The arc, for positive values of X and negative values of Y, is always in the fourth
quadrant. The block ends with success and Done output is activated.

11.14.7.11.3.5 COS

Block that calculates the cosine of Angle, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Angle REAL Angle (in radians)

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the cosine of Angle. If no

Equipments (Devices)

WPS v2.5X | 1797

errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the cosine of the VALUE variable, interpreted in radians, storing the
final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the cosine of the VALUE variable, interpreted in radians, storing the
final result in RESULT. The block ends with success and Done output is activated. Notice that the
block accepts negative input values and greater than one turn.

Equipments (Devices)

WPS v2.5X | 1798

11.14.7.11.3.6 SIN

Block that calculates the sine of Angle, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Angle REAL Angle (in radians)

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

When this block has a TRUE value in EN, it sends to the Result output the sine of Angle. If no errors,
the Done variable is set. If there is any error in the operation, Done is not set, staying in FALSE
status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1799

The above example calculates the sine of the VALUE variable, interpreted in radians, storing the final
result in RESULT. The block ends with success and Done output is activated.

The above example calculates the sine of the VALUE variable, interpreted in radians, storing the final
result in RESULT. The block ends with success and Done output is activated. Notice that the block
accepts negative input values.

The above example calculates the sine of the VALUE variable, interpreted in radians, storing the final
result in RESULT. The block ends with success and Done output is activated. Notice that the block
accepts values greater than one full turn.

11.14.7.11.3.7 TAN

Block that calculates the tangent of Angle, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT
EN BOOL Block enabling

Angle REAL Angle (in radians)

VAR_OUTPUT
Done BOOL End of operation

Result REAL Variable that stores the result of the operation

Operation

Equipments (Devices)

WPS v2.5X | 1800

When this block has a TRUE value in EN, it sends to the Result output the tangent of Angle. If no
errors, the Done variable is set. If there is any error in the operation, Done is not set, staying in
FALSE status, while Result remains with its value unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Example

The above example calculates the tangent of the VALUE variable, interpreted in radians, storing the
final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the tangent of the VALUE variable, interpreted in radians, storing the
final result in RESULT. The block ends with success and Done output is activated. Notice that the
block accepts negative input values and greater than one turn.

Equipments (Devices)

WPS v2.5X | 1801

11.14.7.11.4 Math Util

11.14.7.11.4.1 MAX

Block that compares the values of Value1 and Value2 and stores the highest of them in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Highest of the values compared

Operation

When this block has a TRUE value in EN, it sends to the Result output the highest value in the
comparison between Value1 and Value2. If no errors, the Done variable is set. If there is any error in
the operation, Done is not set, staying in FALSE status, while Result remains with its value
unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1802

Example

The above example calculates the maximum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the maximum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. The block ends with success and Done output is activated. Notice that the
types of the input variables can be different without causing execution problems.

Equipments (Devices)

WPS v2.5X | 1803

The above example calculates the maximum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. Since the result is higher than the maximum supported by SINT type, the
block generates an error and Done output is disabled.

11.14.7.11.4.2 MIN

Block that compares the values of Value1 and Value2 and stores the lowest of them in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value1
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
First value of comparison

Value2
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Second value of comparison

VAR_OUTPUT

Done BOOL End of operation

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Low est of the values compared

Operation

When this block has a TRUE value in EN, it sends to the Result output the lowest value in the
comparison between Value1 and Value2. If no errors, the Done variable is set. If there is any error in
the operation, Done is not set, staying in FALSE status, while Result remains with its value
unchanged.

When EN has FALSE value, Result remains unchanged and Done remains in FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1804

Example

The above example calculates the minimum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. The block ends with success and Done output is activated.

The above example calculates the minimum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. The block ends with success and Done output is activated. Notice that the
types of the input variables can be different without causing execution problems.

Equipments (Devices)

WPS v2.5X | 1805

The above example calculates the minimum value between VALUE 1 and VALUE2 variables, storing
the final result in RESULT. Since the result is lower than the minimum supported by SINT type, the
block generates an error and Done output is disabled.

11.14.7.11.4.3 SAT

Block that performs a routine for saturation of the value found in Value in accordance with the limits
for Minimum and Maximum, storing the result in Result.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

Value
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Reference value

Minimum
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Inferior saturation value

Maximum
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Superior saturation value

VAR_OUTPUT

Q BOOL
Indicator that there w as saturation in the

process

Result
BYTE USINT SINT WORD UINT

INT DWORD UDINT DINT REAL
Result of operation

Operation

When this block has a TRUE value in EN, it performs a comparison between Value and Minimum and
Maximum. If Value is in the range between Minimum and Maximum, Result receives the value of
Value and Q remains FALSE. If Value is higher than Maximum, Result receives Maximum and Q
receives TRUE. If Value is lower than Minimum, Result receives Minimum and Q receives TRUE. If
there is any error in the operation, Q is not set, staying in FALSE status, while Result remains with
its value unchanged.

Equipments (Devices)

WPS v2.5X | 1806

When EN has FALSE value, Result remains unchanged and Q remains in FALSE.

Block Flowchart

Example

Equipments (Devices)

WPS v2.5X | 1807

The above example passes the VALUE value to RESULT, since it is not lower than MINIMUM or
higher than MAXIMUM. The block ends successfully and the Q output is disabled, since there was no
saturation.

The above example passes the MAXIMUM to RESULT, since VALUE is higher than MAXIMUM. The
block ends successfully and the Q output is activated, since there was saturation.

The above example passes the MINIMUM to RESULT, since VALUE is lower than MINIMUM. The
block ends successfully and the Q output is activated, since there was saturation.

Equipments (Devices)

WPS v2.5X | 1808

The above example passes the MAXIMUM value to RESULT, since VALUE is higher than MAXIMUM.
The block ends successfully and the Q output is activated, since there was saturation.

11.14.7.12Module

11.14.7.12.1 USERFB

Block that performs a subroutine programmed by the user.

Ladder Representation

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

INPUT
According to user

programming
Block inputs

VAR_OUTPUT

ENO BOOL End of operation

OUTPUT
According to user

programming
Block outputs

VAR_IN_OUT IN_OUT
According to user

programming
Block inputs/outputs

VAR MYUSERFB_INST_0 MYUSERFB Instance of access to block structure

Operation

When this block has a TRUE value in EN, it updates the values of internal fields with the input
variables, performs the Ladder routine programmed by the user and updates the values of the outputs
after completing routine.

When EN has FALSE value, outputs remain unchanged.

The ENO value forwards to the next Ladder block the EN value after the operation is completed.

Equipments (Devices)

WPS v2.5X | 1809

NOTE!
Refer to section Working with USERFBs for further information.

Compatibility

Device Version

PLC300 1.50 or higher

SCA06 2.00 or higher

Block Flowchart

11.14.7.13Timer

11.14.7.13.1 TOF

Timer block that, when energized, disables the output after a delay set by PT.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1810

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

IN BOOL Block enabling

PT
WORD UINT

DWORD UDINT
Delay of output deactivating

TIMEBASE WORD Time base for PT and ET

VAR_OUTPUT

Q BOOL Block output

ET
WORD UINT

DWORD UDINT
Counter elapsed time

VAR TOF_INST_0 TOF Instance of access to block structure

NOTE!
In CFW300, the PT e ET fields can only be WORD ou UINT type.

Operation

While the IN input is TRUE, the Q output is also TRUE and ET also receives the value zero.
On the negative transition edge in IN, counting is triggered and ET is incremented according to
TIMEBASE. When ET equals PT, the Q output goes to state FALSE until IN revolutions to FALSE.

Compatibility

Device Version

PLC300 1.50 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1811

Operation Diagram

Equipments (Devices)

WPS v2.5X | 1812

Example

The above example disables the DO1 output to identify a low level in DI1 for 12 seconds, remaining
disabled until DI1 again be TRUE.

11.14.7.13.2 TON

Timer block that, when energized, enables the output after a delay set by PT.

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1813

Variable Type Name Data Type Description

VAR_INPUT

IN BOOL Block enabling

PT
WORD UINT

DWORD UDINT
Delay of output drive

TIMEBASE WORD Time base for PT and ET

VAR_OUTPUT

Q BOOL Block output

ET
WORD UINT

DWORD UDINT
Counter elapsed time

VAR TON_INST_0 TON Instance of access to block structure

NOTE!
In CFW300, the PT e ET fields can only be WORD ou UINT type.

Operation

While the IN input is FALSE, the Q output is FALSE and ET also receives the value zero.
On the edge positive transition in IN, counting is triggered and ET is incremented according to
TIMEBASE. When ET equals PT, the Q output goes to state TRUE until IN revolutions to FALSE.

Compatibility

Device Version

PLC300 1.50 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1814

Operation Diagram

Equipments (Devices)

WPS v2.5X | 1815

Example

The above example shows the initial conditions of the block and of the routine variables.

When activated the IN input, counting is triggered. Since ET equals PT, the Q output is enabled.

Note that a change in PRESET variable is not forwarded to the PT field while the IN entry remains
enabled.

Equipments (Devices)

WPS v2.5X | 1816

Disabling the IN input, the value of PT is updated and the Q output is disabled. When activating it
again, counting is triggered.

Disabling the IN input, the value of ET remains saved.

Enabling the IN input, the value of ET is reset and counting is triggered.

When ET reaches the value PT, the Q is output enabled and remains so while IN is at TRUE level.

11.14.7.13.3 TP

Timer block that, when identifies it is energized, enables the output after a delay set by PT.

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1817

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

IN BOOL Block enabling

PT
WORD UINT

DWORD UDINT
Time w hile the output is enabled

TIMEBASE WORD Time base for PT and ET

VAR_OUTPUT

Q BOOL Block output

ET
WORD UINT

DWORD UDINT
Counter elapsed time

VAR TP_INST_0 TP Instance of access to block structure

NOTE!
In CFW300, the PT e ET fields can only be WORD ou UINT type.

Operation

On the edge positive transition in IN, Q receives TRUE value, counting is triggered and ET is
incremented according to TIMEBASE. When ET equals PT, the Q output goes to state FALSE until
IN revolutions to FALSE. At that moment, if IN is at TRUE level, nothing happens. On the edge
positive transition in IN, ET is automatically reset.

Compatibility

Device Version

PLC300 1.50 or higher

SCA06 2.00 or higher

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1818

Operation Diagram

Equipments (Devices)

WPS v2.5X | 1819

Example

The above example enables the DO1 output for six seconds at each DI1 positive transition.

11.14.7.14RTC

11.14.7.14.1 INTIME

Block that performs a programmed enabling for a time based on RTC (Real Time Clock).

Ladder Representation

Block Structure

Equipments (Devices)

WPS v2.5X | 1820

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

TIMEON_HOUR WORD UINT Enabling hour

TIMEON_MINUTE WORD UINT Enabling minute

TIMEON_SECOND WORD UINT Enabling second

TIMEOFF_HOUR WORD UINT Disabling hour

TIMEOFF_MINUTE WORD UINT Disabling minute

TIMEOFF_SECOND WORD UINT Disabling second

Q_OPTION# BYTE Output operation

VAR_OUTPUT Q BOOL Block output

Operation

When this block has a TRUE value in EN, it has two modes of operation. If Q_OPTION# is Normal, Q
is enabled when the internal clock's time is equal to that defined by the parameters TIMEON and
disabled when the internal clock's time is equal to the parameters set by TIMEOFF. If Q_OPTION# is
Inverted, Q is disabled when the internal clock's time is equal to that defined by the parameters
TIMEON and enabled when the internal clock's time is equal to the parameters set by TIMEOFF.

When EN has FALSE value, Q remains FALSE.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1821

Example

In the example above, the INTIME block is enabled, the Q_OPTION# input is enabled for NORMAL
operation and the current time of the internal clock of the device is lower than the registered enabling
inputs of the block (HOUR_ON, MINUTE_ON and SECOND_ON). This way, the Q output is disabled.

Equipments (Devices)

WPS v2.5X | 1822

In the example above, the INTIME block is enabled, the Q_OPTION# input is enabled for NORMAL
operation and the current time of the internal clock of the device is equal to the registered in the
enabling inputs of the block (HOUR_ON, MINUTE_ON and SECOND_ON). This way, the Q output is
disabled.

In the above example, the INTIME block is disabled. This way, regardless of the input, the Q output is
disabled.

Equipments (Devices)

WPS v2.5X | 1823

In the example above, the INTIME block is enabled, the Q_OPTION# input is enabled for NORMAL
operation and the current time of the internal clock of the device is equal to the registered in the
disabling inputs of the block (HOUR_OFF, MINUTE_OFF and SECOND_OFF). This way, the Q
output is enabled.

In the example above, the INTIME block is enabled, the Q_OPTION# input is enabled for NORMAL
operation and the current time of the internal clock of the device is superior to the registered in the
disabling inputs of the block (HOUR_OFF, MINUTE_OFF and SECOND_OFF). Thus, the Q output is
disabled.

11.14.7.14.2 INWEEKDAY

Block that performs a programmed enabling for weekdays based on RTC (Real Time Clock).

Ladder Representation

Equipments (Devices)

WPS v2.5X | 1824

Block Structure

Variable Type Name Data Type Description

VAR_INPUT

EN BOOL Block enabling

SUNDAY# BOOL Enabled on Sundays

MONDAY# BOOL Enabled on Mondays

TUESDAY# BOOL Enabled on Tuesdays

WEDNESDAY# BOOL Enabled on Wednesdays

THURSDAY# BOOL Enabled on Thursdays

FRIDAY# BOOL Enabled on Fridays

SATURDAY# BOOL Enabled on Saturdays

Q_OPTION# BYTE Output operation

VAR_OUTPUT Q BOOL Block output

Operation

When this block has a TRUE value in EN, it has two modes of operation. If Q_OPTION# is Normal, Q
is enabled if the day of week of the internal clock has Enabled parameter in the block. If Q_OPTION#
is Inverted, Q is disabled if the day of week of the internal clock has Enabled parameter in the block.

When EN has FALSE value, Q remains FALSE.

NOTE!
The weekdays are identified by numbers, with Sunday being day 0 and Saturday day 6.

Block Flowchart

Equipments (Devices)

WPS v2.5X | 1825

Example

Equipments (Devices)

WPS v2.5X | 1826

In the above example, the INWEEKDAY block is disabled. This way, regardless of the input, the Q
output is disabled.

In the example above, the INWEEKDAY block is enabled and Q_OPTION# input is enabled for
NORMAL operation. The current day of the week of the device's internal clock is Wednesday (value
3), which has ENABLED status in the programming. This way, the Q output is enabled.

In the example above, the INWEEKDAY block is enabled and Q_OPTION# input is enabled for
NORMAL operation. The current day of the week of the device's internal clock is Thursday (value 4),
which has DISABLED status in the programming. Thus, the Q output is disabled.

Equipments (Devices)

WPS v2.5X | 1827

In the example above, the INWEEKDAY block is enabled and Q_OPTION# input is enabled for
INVERTED operation. The current day of the week of the device's internal clock is Thursday (value 4),
which has DISABLED status in the programming. This way, the Q output is enabled.

11.14.7.15Structures

Structure is a data grouping used to define a recipe or an object.

In the Ladder program, it is possible to create variables of the structure type and use them in the blocks. To
access the internal members of the structure, the '.' is used followed by its respective member.

Creating a structure

1. With the right button of the mouse on the folder Structure, click on New file.

Figure 1: Creating a structure

2. Define the file name and press the Next button.

Equipments (Devices)

WPS v2.5X | 1828

Figure 2: Defining the structure name

3. Configure the structure using the buttons presented in the figure below.

Figure 3: Editing the Structure

4. After finishing the edition of the structure, click on the button Finish.

Equipments (Devices)

WPS v2.5X | 1829

Figure 4: Structure created in the project

Editing a structure

Just double click on the desired structure, as shown in figure 4, and a window will open as shown in figure 3,
allowing to insert new data, erase or move the position of the data.

11.14.8Communication

11.14.8.1 Force I/O

Overview

The force inputs and outputs window is used for the values of the digital and analog inputs to be read by the
program, by values manipulated by the user, regardless their physical state. It also allows the manipulation of
the physical states of the digital and analog outputs by the user independently of the values calculated by the
program.
In order to force the device inputs and outputs, it is necessary that the online monitoring be active and the
option Run cyclically be enabled. The data are sent to the device every 2 seconds.
The values can be edited with the device disconnected. The configurations are stored in the resources and
recorded whenever the main resource selection is changed.
The data displayed on the force I/O window contain the values belonging to the resource (and configuration)
selected as main.

The force I/O window is open trough the menu Online > Force I/O:

Equipments (Devices)

WPS v2.5X | 1830

Toolbar

The toolbar of the force window has the options to run cyclically, upload the device force configuration, enable
all and disable all:

 Run cyclically: Sends the user's configurations to the device and updates the state of the inputs and
outputs in a cyclic way.

 Upload configuration: Allows the current configuration of the device to be read. For this option to be
enabled, it is necessary that the online monitoring be active and the option run cyclically be disabled.

 Enable all: Enables the force I/O of all of the inputs and outputs of the device.

 Disable all: Disables the force I/O of all of the inputs and outputs of the device.

Input and Output commands

For each digital and analog input and output there is a selection box linked to enable the force, a status field
and an edition field.

Digital:

1. Number of the digital inputs/output
2. Enable/disable Force I/O

Equipments (Devices)

WPS v2.5X | 1831

3. Current status of the I/O: It has three statuses: 1. light green LED: activated; 2. dark green LED:
deactivated; 3. gray LED: the value is not being read.

4. Enable/disable the input/output

Analog:

1. Number of the analog input/output
2. Enable/disable Force I/O
3. Current value of the input/output
4. Value of the input/output configured by the user

NOTE!
The analog signal scale has 15 bits plus 1 bit for signal, except for SSW900 which it has only 10
unsigned bits.

WComm

WPS v2.5X | 1832

12 WComm

12.1 Introduction

The WComm (Communication Manager) configures the communication channels of the USB interfaces,

communication ports (COM) and Ethernet, providing such connections via Modbus TCP protocol and data

access via FTP for access through other applications.

WComm

WPS v2.5X | 1833

WComm

WPS v2.5X | 1834

12.2 Configuration

12.2.1 Menus

The WComm offers the configuration options available in this menu:

Menu File:

Option to activate or deactivate the communication with the applications (standard: active);

Configuration… presents a dialogue box with options.

The dialogue box has the options: Communication, Miscellaneous and FTP Config.

Communication
- Checkbox: when checked, it enables the WComm for remote connection via TCP/IP;
- Port Number: number of the TCP/IP communication port the WComm uses for communication with
applications that communicate with the devices through it;
- IP Authentication: list of the IP addresses that can access the WComm. An empty list indicates that any IP
address can access the WComm.

WComm

WPS v2.5X | 1835

Miscellaneous
- Language: allows selecting the language of the WComm from the options available in the menu.

WComm

WPS v2.5X | 1836

FTP Config
The FTP server (File Transfer Protocol) allows the files contained in the PLC300 SD card to be handled by
an FTP client. In order to start the FTP server, see the information below:
- Host: presents the hostname to access the FTP service;
- Button to enable or disable the FTP service (default: disabled);
- Button to modify the administrator's password.

- FTP Status:
The image below presents the FTP service enabled (Enable button pressed):

WComm

WPS v2.5X | 1837

- Modify the administrator's password:
This function will be only available when the FTP service is enabled, after clicking on the button to change the
password.
Enter: current password, new password, retype the new password.

WComm

WPS v2.5X | 1838

NOTE: The FTP service will be available using any FTP client.
- Hostname: indicated in the window above as "BR08080808".
- Port: 2221.
- Username: admin.
- Password: default: weg, or defined by the user.

Other configurations of the FTP service will be available in the Configuration File.

12.2.2 Quickstart Guide for FTP

The first step is to install the WPS, using the installer file available at http://www.weg.net.
Copy the folder name where WPS was installed (usually C:\WEG\WPS 2.50\)

WComm is a WPS's module and its standard configuration allows to access PLC300 device through USB
port, giving access since root folder /PLC300/ on SD Card (connected to PLC300).

The FTP service starts enabled, because of that is necessary to activate it at first use: the instructions are
available in session Configuration.

Once enabled, the WComm's FTP service uses the standard configuration.
To change the configuration, please follow the steps below.

If the WComm's configuration file was damaged/corrupted during edition, it may be necessary to uninstall and
reinstall WPS.
Thus, if necessary to change configuration file, it is recommended to only change the connection type line.
Leave another changes to a next file edition.

WComm

WPS v2.5X | 1839

Changing the connection type.

- Using an regular text editor (Notepad), edit the configuration file located in folder where WPS is installed,
usually C:\WEG\WPS 2.50\wps\modules\gateway\conf\users.properties.

- In WComm, click the button to check communication, making sure that PLC300 is accessible:

- Select and copy the connection type line as shown in image above (text in blue highlight).

- In users.properties file, change the connection´s variable, changing by text copied in previous step:
From: ftpserver.user.admin.connection=USB/@0
To: ftpserver.user.admin.connection=Ethernet/Modbus-TCP/192.168.0.10\:502/@1

 This instruction sets the communication type will be used to access the FTP service when logged as
administrator (admin).
 There are samples in configuration file for all possibilities of connections: USB, Serial and Ethernet.
 These samples starts with character #, therefore changing it does not affects the software operation (since
the # character being kept at line start).

- Save changes in users.properties file.

- Close * the WPS.

- After that, open * WPS. It will load the WComm new configuration.

Accessing data.

WComm

WPS v2.5X | 1840

- WComm module has two user profiles:
admin - permission to read and write on SD Card. Can create, read and delete files and folders.
anonymous - read only permission on files at SD Card.

- Restrictions:
It is not possible to execute (open) files directly from SD Card: it is necessary to copy file to a local folder
an then is possible to execute it from local folder.
It is not possible to multi select files and folders: to transfer files and folders, please copy one at a time.

- Be sure that PLC300 is communicating with WComm (check corresponding connection).

- Access the FTP service as admin user:
Access file explorer ("My Computer") from Operational System.
Click on address bar, changing the selection "This Computer" for ftp://admin@localhost:2221. Press
Enter.
Type user: admin and password: weg when requested in a login window.
The SD Card content will be shown. If there is no SD Card in PLC300 the system shows an error.

 Also is possible to login as anonymous user. To do that, please follow steps above, using the folder ftp://
anonymous@localhost:2221.

Disabling and Enabling users.

- Using an regular text editor (Notepad), edit the configuration file located in folder where WPS is installed,
usually C:\WEG\WPS 2.50\wps\modules\gateway\conf\users.properties.

- In users.properties file, change the variable ftpserver.user.anonymous.enableflag, changing the value as
shown:

From: ftpserver.user.anonymous.enableflag=true
To: ftpserver.user.anonymous.enableflag=false

 This instruction enables (true) or disables (false) the user anonymous.
 Not only anonymous, but also admin can be changed, though it is not recommended.

- Save changes in users.properties file.

- Close * the WPS.

- After that, open * WPS. It will load the WComm new configuration.

Changing root folder.

- Using an regular text editor (Notepad), edit the configuration file located in folder where WPS is installed,
usually C:\WEG\WPS 2.50\wps\modules\gateway\conf\users.properties.

- In users.properties file, change the variable ftpserver.user.admin.homedirectory, changing the value by
the new path, as follows:

From: ftpserver.user.admin.homedirectory=/PLC300/
To: ftpserver.user.admin.homedirectory=/PLC300/0001/
This instruction ftpserver.user.admin.homedirectory changes the root folder available by FTP service
when logged as admin user.

- It is also possible to change this configuration for anonymous user. To use the same path as shown in

WComm

WPS v2.5X | 1841

sample above, the configuration should be:
From: ftpserver.user.anonymous.homedirectory=/PLC300/
To: ftpserver.user.anonymous.homedirectory=/PLC300/0001/

- Save changes in users.properties file.

- Close * the WPS.

- After that, open * WPS. It will load the WComm new configuration.

Changing the password.

- Informations about the procedure to change password (and another configurations) are available in chapter
Configuration.

NOTE!
* It is possible to execute just the WComm module, which is available at the WPS's install folder,
usually at C:\WEG\WPS 2.50\wps\modules\gateway\CommunicationGateway.exe.
At this condition, when necessary to close the WComm, click the right mouse button over icon

 in systray and select the option to close.

12.2.3 Configuration File

The FTP service configuration file allows customizing the following data:

Read-only or read and write permission for administrator user;
FTP default path: the initial path that will be displayed on the FTP client after the access;
Type of communication with the resource: indicate the communication form between the WComm and the
resource. Such information is available in the communication port selection, which must be selected and
copied, as shown in the following images:

WComm

WPS v2.5X | 1842

Serial

USB

WComm

WPS v2.5X | 1843

Ethernet

The configuration file name is users.properties, available in folder (...)/wps/modules/gateway/conf/ of the
WPS.

Configuration file structure with example information (setting up anonymous and admin profiles):

WComm

WPS v2.5X | 1844

#Generated file - don't edit (please)
#Fri May 12 15:35:59 BRT 2017

ftpserver.user.anonymous.idletime=0 Time (in s) for automatic disconnection of
the FTP.
Default: 0 (without automatic disconnection -
recommended)

ftpserver.user.anonymous.enableflag=true Enable anonymous user?
Default: true (enabled), false (disabled).

ftpserver.user.anonymous.homedirectory=/PLC300/0001/ Path to the SD Card files that will be the root
folder in the FTP server. Default: /

ftpserver.user.anonymous.connection=USB/@0 Connection to the resource when accessing
an FTP with an anonymous user.

ftpserver.user.admin.writepermission=true Read/write permission for admin user, where:
true: read and write to the SD Card; false: read-
only.

ftpserver.user.admin.idletime=0 Time (in s) for automatic disconnection of
the FTP.
Default: 0 (without automatic disconnection -
recommended)

ftpserver.user.admin.enableflag=true Enable admin user?
Default: true (enabled), false (disabled).

ftpserver.user.admin.
userpassword=XXXXXXXXXXXXXXXXXXXXXXXXXX

Password in encrypted format.
Do not change *

ftpserver.user.admin.homedirectory=/PLC300/ Path to the SD Card files that will be the root
folder in the FTP server. Default: /

ftpserver.user.admin.connection=USB/@0 Connection to the resource when accessing
an FTP with an admin user.

#ftpserver.user.admin.connection=USB/@0 Example of USB connection to the resource
through the admin FTP user.

#ftpserver.user.admin.connection=Serial/COM1/Modbus-
RTU/@1

Example of RS232 Serial connection to the
resource, via COM1, (admin FTP user).

#ftpserver.user.admin.connection=Ethernet/Modbus-
TCP/192.168.0.10\:502/@1

Example of Ethernet connection to the
resource, via IP 192.168.0.10, port 502 and Unit
Id 1, (admin FTP user).

NOTE: Additional information to configure WComm, in a first utilization to read SD Card data, is
available in Quickstart Guide for FTP.

NOTE: Any change in this file requires the reset of the WPS in order to implement the new
configuration of WComm module.
* Changing the password in the users.properties file compromises the access of the user to
the application FTP service.

WComm

WPS v2.5X | 1845

12.3 Add/Remove Connections

In order to add a new connection, select one of the available connections: Communication Ports (COM),
USB and Ethernet.

Communication Port (COM):

Expand the “Communication Ports (COM)” item.

In case the COM port is not listed, select “Manage Serial Ports” in the “Communication Port” item, and
choose the used port.

Change the baud rate, data bits, stop bits and parity settings according to the equipment configuration.

Select the communication protocol (Modbus-RTU);
Configure the Modbus-RTU protocol:

WComm

WPS v2.5X | 1846

Transmission delay(ms): waits for this time before sending the next telegram.
- Adjustable range: 0 ... 20000;
- Default: 0.

Response delay (ms): waits for this time before trying to receive the response from the sent
telegram.

- Adjustable range: 0 ... 20000;
- Default: 0.

Timeout (ms): waits for this time before indicating that the response was not
received.

- Adjustable range: 100 ... 20000;
- Default: 5000.

Click on the New connection… button:

- Select the slave address for the new connection according to the equipment configuration.

USB Interface

Expand the USB item.
Configure the USB interface:

Transmission delay(ms): waits for this time before sending the next telegram.
- Adjustable range: 0 ... 20000;
- Default: 0.

Response delay (ms): waits for this time before trying to receive the response from the sent
telegram.

- Adjustable range: 0 ... 20000;
- Default: 0.

Timeout (ms): waits for this time before indicating that the response was not
received.

- Adjustable range: 100 ... 20000;
- Default: 1000.

Click on the New connection… button.

Ethernet

WComm

WPS v2.5X | 1847

Expand the Ethernet item.
Select the communication protocol (Modbus-TCP).
In case the IP address is not listed, select the port with the New Connection option in the “Modbus-TCP”
item, and configure the connection.

Description: Connection description to be displayed.
IP Address: Address configured in the Modbus-TCP slave device.
TCP Port: Number of the port used for the communication with the Modbus-TCP slave (Default 502).
Unit ID: Modbus-TCP slave address.

Configure the connection times:
Transmission delay(ms): waits for this time before sending the next telegram.

- Adjustable range: 0 ... 20000;
- Default: 0.

Response delay (ms): waits for this time before trying to receive the response from the sent
telegram.

- Adjustable range: 0 ... 20000;
- Default: 0.

Timeout (ms): waits for this time before indicating that the response was not received.
- Adjustable range: 100 ... 20000;
- Default: 5000.

Click on the New connection… button.
Select the slave address for the new connection according to the equipment configuration.

WPS v2.5X | 1848

Index

- A -
At; Direct Representation 120

- C -
Cam Table Select 1432, 1437, 1439, 1441

Config; Configuration 120

configuration 1136, 1137, 1138, 1139, 1140, 1141

- D -
Data Type 120

download 1147

- F -
files 1160

force I/O 399, 626, 1145, 1829

Function; Function Block 120

Functional Block 120

- M -
MC_CamTableSelect 1432, 1437, 1439, 1441

MC_Power 1446

MC_Reset 1449, 1451, 1455, 1457, 1462, 1465,
1466, 1469, 1470, 1473, 1477, 1480, 1483, 1489, 1495

modbus 1160

- O -
----OLD_KEYWORDS----files 1160

online commands 1142

- P -
Program; Application 120

- R -
Resource; Equipament 120

- S -
SD Card 1160

setup 1136, 1137, 1138, 1139, 1140, 1141

- T -
Task 120

- U -
upload 1157

- V -
Variable 120

- W -
Watchdog 121

	WPS v2.5X
	Introduction
	Welcome
	System Requirements
	Supported Equipments
	Copyright Notice
	Safety Notice

	What's New
	What's New - This Version
	What's New - Previous Versions

	Installation/Uninstallation
	Before Installing
	Installing
	Uninstalling

	Getting to Know the Environment
	Environment
	Configuration Structure

	Quick Start
	Welcome Window
	Creating New Configuration
	New Configuration - Online Equipment
	New Configuration - Offline Equipment
	Creating New Resource
	New Resource - Online Equipment
	Pop-up Menu
	Pop-up Menu - Configuration
	Pop-up Menu - Resource

	Communication
	Equipment Parameterization
	Establishing Communication - USB Serial Port
	Establishing Communication - RS232
	Establishing Communication - RS485
	Cables
	USB/Serial Converter

	Ladder
	Concepts
	Introduction
	Legend
	Contact Logic
	Data types
	Direct Representation

	Editor
	Desktop
	Ladder Menu
	Rungs
	Overview
	Editing
	Title and Comment
	Inserting Elements
	Overview
	In Series
	In Parallel

	Browsing
	With the Keyboard
	With the Mouse

	Copy/Paste

	Variables
	Overview
	Fields
	Editing in the Rung
	Literals in the Rung
	Arrays in the Rung
	Instances and Structures in the Rung
	Volatile and Retentive Instances

	Compile
	Transfer
	Online Monitoring

	Working with USERFBs
	Creating USERFBs
	Adding input/output
	Editing the Ladder
	Using USERFBs

	Diagnostic
	Monitoring Variable
	Trend
	Overview
	Configuration

	Wizards
	Overview
	Monitoring Wizard
	Configuration Wizard

	Equipments (Devices)
	CFW100
	Description
	System Markers
	I/O's
	Import from WLP
	Parameters
	Overview
	Configuration
	Read and Write of Parameters
	Hide/Unhide Parameters and Group of Parameters
	User Parameters

	Ladder
	Coil
	DIRECTCOIL
	INVERTEDCOIL
	RESETCOIL
	SETCOIL
	TOGGLECOIL

	Communication Network
	Modbus RTU
	Modbus RTU Overview
	MB_MasterControlStatus
	MB_ReadBinary
	MB_ReadRegister
	MB_SlaveStatus
	MB_WriteBinary
	MB_WriteRegister

	Compare
	COMP_EQ
	COMP_GE
	COMP_GT
	COMP_LE
	COMP_LT
	COMP_NE

	Contact
	NCCONTACT
	NOCONTACT
	NTSCONTACT
	PTSCONTACT

	Control
	PID

	Conversion
	BOOL
	BYTE_TO_BOOL
	DWORD_TO_BOOL
	REAL_TO_BOOL
	WORD_TO_BOOL

	BYTE
	BOOL_TO_BYTE
	DWORD_TO_BYTE
	REAL_TO_BYTE
	WORD_TO_BYTE

	DWORD
	BOOL_TO_DWORD
	BYTE_TO_DWORD
	REAL_TO_DWORD
	WORD_TO_DWORD

	REAL
	BOOL_TO_REAL
	BYTE_TO_REAL
	DWORD_TO_REAL
	WORD_TO_REAL

	WORD
	BOOL_TO_WORD
	BYTE_TO_WORD
	DWORD_TO_WORD
	REAL_TO_WORD

	Counter
	CTD
	CTU
	CTUD

	Data Transfer
	DEMUX
	ILOAD
	ILOADBOOL
	ISTORE
	ISTOREBOOL
	MUX
	SEL
	STORE
	USERERR

	Filter
	LOWPASS

	Logic
	Logic Bit
	RESETBIT
	SETBIT
	TESTBIT

	Logic Boolean
	AND
	NOT
	OR
	XNOR
	XOR

	Logic Rotate
	ROL
	ROR

	Logic Shift
	ASHL
	ASHR
	SHL
	SHR

	Math
	Math Basic
	ABS
	ADD
	DIV
	MOD
	MUL
	NEG
	SUB

	Math Extended
	ALOG10
	EXP
	LN
	LOG10
	POW
	ROUND
	SQRT
	TRUNC

	Math Trigonometry
	ACOS
	ASIN
	ATAN
	ATAN2
	COS
	SIN
	TAN

	Math Util
	MAX
	MIN
	SAT

	Module
	USERFB

	Motion Control
	MW_RefVelocity

	Timer
	TON
	TOF
	TP

	Structures

	Communication
	Force I/O

	CFW300
	Description
	System Markers
	I/O's
	Import from WLP
	Parameters
	Overview
	Configuration
	Read and Write of Parameters
	Hide/Unhide Parameters and Group of Parameters
	User Parameters

	Ladder
	Coil
	DIRECTCOIL
	INVERTEDCOIL
	RESETCOIL
	SETCOIL
	TOGGLECOIL

	Communication Network
	Modbus RTU
	Modbus RTU Overview
	MB_MasterControlStatus
	MB_ReadBinary
	MB_ReadRegister
	MB_SlaveStatus
	MB_WriteBinary
	MB_WriteRegister

	Compare
	COMP_EQ
	COMP_GE
	COMP_GT
	COMP_LE
	COMP_LT
	COMP_NE

	Contact
	NCCONTACT
	NOCONTACT
	NTSCONTACT
	PTSCONTACT

	Control
	PID

	Conversion
	BOOL
	BYTE_TO_BOOL
	DWORD_TO_BOOL
	REAL_TO_BOOL
	WORD_TO_BOOL

	BYTE
	BOOL_TO_BYTE
	DWORD_TO_BYTE
	REAL_TO_BYTE
	WORD_TO_BYTE

	DWORD
	BOOL_TO_DWORD
	BYTE_TO_DWORD
	REAL_TO_DWORD
	WORD_TO_DWORD

	REAL
	BOOL_TO_REAL
	BYTE_TO_REAL
	DWORD_TO_REAL
	WORD_TO_REAL

	WORD
	BOOL_TO_WORD
	BYTE_TO_WORD
	DWORD_TO_WORD
	REAL_TO_WORD

	Counter
	CTD
	CTU
	CTUD

	Data Transfer
	DEMUX
	ILOAD
	ILOADBOOL
	ISTORE
	ISTOREBOOL
	MUX
	SEL
	STORE
	USERERR

	Filter
	LOWPASS

	Logic
	Logic Bit
	RESETBIT
	SETBIT
	TESTBIT

	Logic Boolean
	AND
	NOT
	OR
	XNOR
	XOR

	Logic Rotate
	ROL
	ROR

	Logic Shift
	ASHL
	ASHR
	SHL
	SHR

	Math
	Math Basic
	ABS
	ADD
	DIV
	MOD
	MUL
	NEG
	SUB

	Math Extended
	ALOG10
	EXP
	LN
	LOG10
	POW
	ROUND
	SQRT
	TRUNC

	Math Trigonometry
	ACOS
	ASIN
	ATAN
	ATAN2
	COS
	SIN
	TAN

	Math Util
	MAX
	MIN
	SAT

	Module
	USERFB

	Motion Control
	MW_RefVelocity

	Timer
	TON
	TOF
	TP

	Structures

	Communication
	Force I/O

	CFW500
	Description
	Parameters
	Overview
	Configuration
	Read and Write of Parameters
	Hide/Unhide Parameters and Group of Parameters
	User Parameters

	CFW501
	Description
	Parameters
	Overview
	Configuration
	Read and Write of Parameters
	Hide/Unhide Parameters and Group of Parameters
	User Parameters

	CFW-11
	Description
	Parameters
	Overview
	Configuration
	Read and Write of Parameters
	Hide/Unhide Parameters and Group of Parameters
	User Parameters

	Diagnostic
	Trace
	Overview
	Configuration

	LDW900
	Description
	System Markers
	Oriented Start-Up
	Auto-Tuning
	Import from WLP
	Cam Profiles
	Structures

	MW500
	Description
	Parameters
	Overview
	Configuration
	Read and Write of Parameters
	Hide/Unhide Parameters and Group of Parameters
	User Parameters

	PLC300
	Description
	New Features and Corrections
	I/O's
	System Markers
	Ladder
	Coil
	DIRECTCOIL
	IMMEDIATECOIL
	INVERTEDCOIL
	RESETCOIL
	SETCOIL
	TOGGLECOIL

	Communication Network
	CANopen
	CANopen Overview
	CO_MasterControlStatus
	CO_SDORead
	CO_SDOWrite
	CO_SlaveStatus

	Modbus RTU
	Modbus RTU Overview
	MB_MasterControlStatus
	MB_ReadBinary
	MB_ReadRegister
	MB_SlaveStatus
	MB_WriteBinary
	MB_WriteRegister

	Modbus TCP
	Modbus TCP Overview
	MBTCP_ClientControlStatus
	MBTCP_ReadBinary
	MBTCP_ReadRegister
	MBTCP_ServerStatus
	MBTCP_WriteBinary
	MBTCP_WriteRegister

	Compare
	COMP_EQ
	COMP_GE
	COMP_GT
	COMP_LE
	COMP_LT
	COMP_NE

	Contact
	NCCONTACT
	NOCONTACT
	NTSCONTACT
	PTSCONTACT

	Control
	PID
	PID2

	Conversion
	BCD
	BCD_TO_WORD
	WORD_TO_BCD

	BOOL
	BYTE_TO_BOOL
	DWORD_TO_BOOL
	REAL_TO_BOOL
	WORD_TO_BOOL

	BYTE
	BOOL_TO_BYTE
	DWORD_TO_BYTE
	DWORD_TO_BYTES
	REAL_TO_BYTE
	WORD_TO_BYTE
	WORD_TO_BYTES

	DWORD
	BOOL_TO_DWORD
	BYTE_TO_DWORD
	BYTES_TO_DWORD
	REAL_TO_DWORD
	STRING_TO_DWORD
	WORD_TO_DWORD
	WORDS_TO_DWORD

	Rad-Deg
	DEG_TO_RAD
	RAD_TO_DEG

	REAL
	BOOL_TO_REAL
	BYTE_TO_REAL
	DWORD_TO_REAL
	STRING_TO_REAL
	WORD_TO_REAL

	STRING
	DWORD_TO_STRING
	REAL_TO_STRING

	WORD
	BOOL_TO_WORD
	BYTE_TO_WORD
	BYTES_TO_WORD
	DWORD_TO_WORD
	DWORD_TO_WORDS
	REAL_TO_WORD

	Counter
	CTD
	CTU
	CTUD

	Data Transfer
	ARRAYCOPY
	DEMUX
	DEMUX2
	ILOAD
	ILOADBOOL
	ISTORE
	ISTOREBOOL
	MUX
	MUX2
	ReadRecipe
	SCALE
	SEL
	STORE
	SWAP
	SWAP2
	WriteRecipe

	Filter
	LOWPASS

	Hardware
	IMMEDIATE_INPUT
	IMMEDIATE_OUTPUT
	P_RAMP
	PWM
	READENC
	READENC2
	READENC3
	READENC4

	Logic
	Logic Bit
	RESETBIT
	SETBIT
	TESTBIT

	Logic Boolean
	AND
	NOT
	OR
	XNOR
	XOR

	Logic Rotate
	ROL
	ROR

	Logic Shift
	ASHL
	ASHR
	SHL
	SHR

	Math
	Math Basic
	ABS
	ADD
	DIV
	MOD
	MUL
	NEG
	SUB

	Math Extended
	ALOG10
	EXP
	LN
	LOG10
	POW
	ROUND
	SQRT
	TRUNC

	Math Trigonometry
	ACOS
	ASIN
	ATAN
	ATAN2
	COS
	SIN
	TAN

	Math Util
	MAX
	MIN
	SAT

	Module
	CALL
	USERFB

	RTC
	INTIME
	INWEEKDAY

	Screen
	SETSCREEN

	String
	STR_COMPARE
	STR_CONCAT
	STR_COPY
	STR_COPY_LAST
	STR_DELETE
	STR_FIND
	STR_FIND_LAST
	STR_INSERT
	STR_LENGTH
	STR_REPLACE

	Timer
	TOF
	TON
	TP

	Tasks
	Structures
	Recipes

	Screen
	Alarms
	Screen Editor

	Event Log
	Setup
	Configuration
	Configuration Windows
	Display
	Analog
	Encoder
	RS232
	RS485
	CAN
	LAN
	Modbus TCP
	Clock Settings
	Language
	Watchdog

	Communication
	Online Commands
	Force I/O
	Download
	Hot Download
	Overview
	Enable/Disable Hot Download
	Restrictions
	Operation

	Upload
	Comparison of resource and device
	Modbus File Manager
	Communication RS232
	Communication RS485

	PSRW
	Description

	SCA06
	Description
	System Markers
	Oriented Start-Up
	Auto-Tuning
	Import from WLP
	Parameters
	Overview
	Configuration
	Read and Write of Parameters
	Hide/Unhide Parameters and Group of Parameters
	User Parameters

	Ladder
	Coil
	DIRECTCOIL
	IMMEDIATECOIL
	INVERTEDCOIL
	RESETCOIL
	SETCOIL
	TOGGLECOIL

	Communication Network
	CANopen
	CANopen Overview
	CO_SDORead
	CO_SDOWrite

	Compare
	COMPEQ
	COMPGE
	COMPGT
	COMPLE
	COMPLT
	COMPNE

	Contact
	NCCONTACT
	NOCONTACT
	NTSCONTACT
	PTSCONTACT

	Control
	PID

	Conversion
	BCD
	BCD_TO_WORD
	WORD_TO_BCD

	BOOL
	BYTE_TO_BOOL
	DWORD_TO_BOOL
	LREAL_TO_BOOL
	REAL_TO_BOOL
	WORD_TO_BOOL

	BYTE
	BOOL_TO_BYTE
	DWORD_TO_BYTE
	DWORD_TO_BYTES
	LREAL_TO_BYTE
	REAL_TO_BYTE
	WORD_TO_BYTE
	WORD_TO_BYTES

	DWORD
	BOOL_TO_DWORD
	BYTE_TO_DWORD
	BYTES_TO_DWORD
	LREAL_TO_DWORD
	REAL_TO_DWORD
	WORD_TO_DWORD
	WORDS_TO_DWORD

	LREAL
	BOOL_TO_LREAL
	BYTE_TO_LREAL
	DWORD_TO_LREAL
	REAL_TO_LREAL
	WORD_TO_LREAL

	Rad-Deg
	DEG_TO_RAD
	RAD_TO_DEG

	REAL
	BOOL_TO_REAL
	BYTE_TO_REAL
	DWORD_TO_REAL
	LREAL_TO_REAL
	WORD_TO_REAL

	WORD
	BOOL_TO_WORD
	BYTE_TO_WORD
	BYTES_TO_WORD
	DWORD_TO_WORD
	DWORD_TO_WORDS
	LREAL_TO_WORD
	REAL_TO_WORD

	Counter
	CTD
	CTU
	CTUD

	Data Transfer
	ARRAYCOPY
	DEMUX
	DEMUX2
	ILOAD
	ILOADBOOL
	ISTORE
	ISTOREBOOL
	MUX
	MUX2
	SCALE
	SEL
	STORE
	SWAP
	SWAP2
	USERERR

	Filter
	LOWPASS

	Hardware
	IMMEDIATE_INPUT
	IMMEDIATE_OUTPUT
	READENC5

	Logic
	Logic Bit
	RESETBIT
	SETBIT
	TESTBIT

	Logic Boolean
	AND
	NOT
	OR
	XNOR
	XOR

	Logic Rotate
	ROL
	ROR

	Logic Shift
	ASHL
	ASHR
	SHL
	SHR

	Math
	Math Basic
	ABS
	ADD
	DIV
	MOD
	MUL
	NEG
	SUB

	Math Extended
	ALOG10
	EXP
	LN
	LOG10
	POW
	ROUND
	SQRT
	TRUNC

	Math Trigonometry
	ACOS
	ASIN
	ATAN
	ATAN2
	COS
	SIN
	TAN

	Math Util
	MAX
	MIN
	SAT

	Module
	CALL
	USERFB
	Working with USERFBs
	Creating USERFBs
	Adding input/output
	Editing the Ladder
	Using USERFBs

	Motion Control
	Motion Control Cam
	MC_CamIn
	MC_CamOut
	MC_CamTableSelect
	MW_CamCalc

	Motion Control Command
	MC_Power
	MC_Reset
	MC_Stop
	MW_IqControl

	Motion Control Gear
	MC_GearIn
	MC_GearInPos
	MC_GearOut
	MC_PhasingRelative

	Motion Control Homing
	MC_FinishHoming
	MC_HomeDirect
	MC_StepAbsoluteSwitch
	MC_StepLimitSwitch
	MC_StepReferencePulse

	Motion Control Move
	MC_MoveAbsolute
	MC_MoveRelative
	MC_MoveVelocity

	RTC
	INTIME
	INWEEKDAY

	Timer
	TOF
	TON
	TP

	Cam Profiles
	Structures

	Diagnostic
	Monitoring Panel
	Main Signals

	Log
	Overview
	Configuration

	Trace
	Overview
	Configuration

	SSW-06
	Description
	Parameters
	Overview
	Configuration
	Read and Write of Parameters
	Hide/Unhide Parameters and Group of Parameters
	User Parameters

	SSW-07
	Description
	Parameters
	Overview
	Configuration
	Read and Write of Parameters
	Hide/Unhide Parameters and Group of Parameters
	User Parameters

	SSW-08
	Description
	Parameters
	Overview
	Configuration
	Read and Write of Parameters
	Hide/Unhide Parameters and Group of Parameters
	User Parameters

	SSW900
	Description
	I/O's
	System Markers
	Volatile Markers
	Import from WLP
	Parameters
	Overview
	Configuration
	Read and Write of Parameters
	Hide/Unhide Parameters and Group of Parameters_2
	User Parameters

	Ladder
	Coil
	DIRECTCOIL
	INVERTEDCOIL
	RESETCOIL
	SETCOIL
	TOGGLECOIL

	Communication Network
	Modbus RTU
	Modbus RTU Overview
	MB_MasterControlStatus
	MB_ReadBinary
	MB_ReadRegister
	MB_SlaveStatus
	MB_WriteBinary
	MB_WriteRegister

	Compare
	COMP_EQ
	COMP_GE
	COMP_GT
	COMP_LE
	COMP_LT
	COMP_NE

	Contact
	NCCONTACT
	NOCONTACT
	NTSCONTACT
	PTSCONTACT

	Control
	PID

	Conversion
	BOOL
	BYTE_TO_BOOL
	DWORD_TO_BOOL
	REAL_TO_BOOL
	WORD_TO_BOOL

	BYTE
	BOOL_TO_BYTE
	DWORD_TO_BYTE
	REAL_TO_BYTE
	WORD_TO_BYTE

	DWORD
	BOOL_TO_DWORD
	BYTE_TO_DWORD
	REAL_TO_DWORD
	WORD_TO_DWORD

	REAL
	BOOL_TO_REAL
	BYTE_TO_REAL
	DWORD_TO_REAL
	WORD_TO_REAL

	WORD
	BOOL_TO_WORD
	BYTE_TO_WORD
	DWORD_TO_WORD
	REAL_TO_WORD

	Counter
	CTD
	CTU
	CTUD

	Data Transfer
	DEMUX
	ILOAD
	ILOADBOOL
	ISTORE
	ISTOREBOOL
	MUX
	SEL
	STORE
	USERERR

	Filter
	LOWPASS

	Logic
	Logic Bit
	RESETBIT
	SETBIT
	TESTBIT

	Logic Boolean
	AND
	NOT
	OR
	XNOR
	XOR

	Logic Rotate
	ROL
	ROR

	Logic Shift
	ASHL
	ASHR
	SHL
	SHR

	Math
	Math Basic
	ABS
	ADD
	DIV
	MOD
	MUL
	NEG
	SUB

	Math Extended
	ALOG10
	EXP
	LN
	LOG10
	POW
	ROUND
	SQRT
	TRUNC

	Math Trigonometry
	ACOS
	ASIN
	ATAN
	ATAN2
	COS
	SIN
	TAN

	Math Util
	MAX
	MIN
	SAT

	Module
	USERFB

	Timer
	TOF
	TON
	TP

	RTC
	INTIME
	INWEEKDAY

	Structures

	Communication
	Force I/O

	WComm
	Introduction
	Configuration
	Menus
	Quickstart Guide for FTP
	Configuration File

	Add/Remove Connections

